Chronic kidney disease (CKD) is one of the severe side effects of type 1 diabetes mellitus (T1DM). However, the detection and diagnosis of CKD are often delayed because of its asymptomatic nature. In addition, patients often tend to bypass the traditional urine protein (urinary albumin)-based CKD detection test. Even though disease detection using machine learning (ML) is a well-established field of study, it is rarely used to diagnose CKD in T1DM patients. This research aimed to employ and evaluate several ML algorithms to develop models to quickly predict CKD in patients with T1DM using easily available routine checkup data. This study analyzed 16 years of data of 1375 T1DM patients, obtained from the Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials directed by the National Institute of Diabetes, Digestive, and Kidney Diseases, USA. Three data imputation techniques (RF, KNN, and MICE) and the SMOTETomek resampling technique were used to preprocess the primary dataset. Ten ML algorithms including logistic regression (LR), k-nearest neighbor (KNN), Gaussian naïve Bayes (GNB), support vector machine (SVM), stochastic gradient descent (SGD), decision tree (DT), gradient boosting (GB), random forest (RF), extreme gradient boosting (XGB), and light gradient-boosted machine (LightGBM) were applied to developed prediction models. Each model included 19 demographic, medical history, behavioral, and biochemical features, and every feature's effect was ranked using three feature ranking techniques (XGB, RF, and Extra Tree). Lastly, each model's ROC, sensitivity (recall), specificity, accuracy, precision, and F-1 score were estimated to find the best-performing model. The RF classifier model exhibited the best performance with 0.96 (±0.01) accuracy, 0.98 (±0.01) sensitivity, and 0.93 (±0.02) specificity. LightGBM performed second best and was quite close to RF with 0.95 (±0.06) accuracy. In addition to these two models, KNN, SVM, DT, GB, and XGB models also achieved more than 90% accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700037 | PMC |
http://dx.doi.org/10.3390/diagnostics11122267 | DOI Listing |
J Chem Inf Model
January 2025
Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.
Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (A.A., L.S.D., E.K.O., R.K.).
Background: While universal screening for Lp(a; lipoprotein[a]) is increasingly recommended, <0.5% of patients undergo Lp(a) testing. Here, we assessed the feasibility of deploying Algorithmic Risk Inspection for Screening Elevated Lp(a; ARISE), a validated machine learning tool, to health system electronic health records to increase the yield of Lp(a) testing.
View Article and Find Full Text PDFJ Hand Surg Eur Vol
January 2025
Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK.
This paper discusses the current literature surrounding the potential use of artificial intelligence and machine learning models in the diagnosis of acute obvious and occult scaphoid fractures. Current studies have notable methodological flaws and are at high risk of bias, precluding meaningful comparisons with clinician performance (the current reference standard). Specific areas should be addressed in future studies to help advance the meaningful and clinical use of artificial intelligence for radiograph interpretation.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Department of Medicine, Division of Cardiology (M.P., N.J.P., N.P.S.), Duke University, Durham, NC.
Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.
Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.
Stat Methods Med Res
January 2025
School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, China.
One primary goal of precision medicine is to estimate the individualized treatment rules that optimize patients' health outcomes based on individual characteristics. Health studies with multiple treatments are commonly seen in practice. However, most existing individualized treatment rule estimation methods were developed for the studies with binary treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!