Predicting Prolonged Length of ICU Stay through Machine Learning.

Diagnostics (Basel)

National Institute of Health Data Science, Peking University, Beijing 100191, China.

Published: November 2021

This study aimed to construct machine learning (ML) models for predicting prolonged length of stay (pLOS) in intensive care units (ICU) among general ICU patients. A multicenter database called eICU (Collaborative Research Database) was used for model derivation and internal validation, and the Medical Information Mart for Intensive Care (MIMIC) III database was used for external validation. We used four different ML methods (random forest, support vector machine, deep learning, and gradient boosting decision tree (GBDT)) to develop prediction models. The prediction performance of the four models were compared with the customized simplified acute physiology score (SAPS) II. The area under the receiver operation characteristic curve (AUROC), area under the precision-recall curve (AUPRC), estimated calibration index (ECI), and Brier score were used to measure performance. In internal validation, the GBDT model achieved the best overall performance (Brier score, 0.164), discrimination (AUROC, 0.742; AUPRC, 0.537), and calibration (ECI, 8.224). In external validation, the GBDT model also achieved the best overall performance (Brier score, 0.166), discrimination (AUROC, 0.747; AUPRC, 0.536), and calibration (ECI, 8.294). External validation showed that the calibration curve of the GBDT model was an optimal fit, and four ML models outperformed the customized SAPS II model. The GBDT-based pLOS-ICU prediction model had the best prediction performance among the five models on both internal and external datasets. Furthermore, it has the potential to assist ICU physicians to identify patients with pLOS-ICU risk and provide appropriate clinical interventions to improve patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700580PMC
http://dx.doi.org/10.3390/diagnostics11122242DOI Listing

Publication Analysis

Top Keywords

external validation
12
calibration eci
12
brier score
12
gbdt model
12
predicting prolonged
8
prolonged length
8
machine learning
8
intensive care
8
internal validation
8
prediction performance
8

Similar Publications

COLOFIT: Development and Internal-External Validation of Models Using Age, Sex, Faecal Immunochemical and Blood Tests to Optimise Diagnosis of Colorectal Cancer in Symptomatic Patients.

Aliment Pharmacol Ther

January 2025

Gastrointestinal and Liver Theme, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham, UK.

Background: Colorectal cancer (CRC) is the third most common cancer in the United Kingdom and the second largest cause of cancer death.

Aim: To develop and validate a model using available information at the time of faecal immunochemical testing (FIT) in primary care to improve selection of symptomatic patients for CRC investigations.

Methods: We included all adults (≥ 18 years) referred to Nottingham University Hospitals NHS Trust between 2018 and 2022 with symptoms of suspected CRC who had a FIT.

View Article and Find Full Text PDF

Extension of an ICU-based noninvasive model to predict latent shock in the emergency department: an exploratory study.

Front Cardiovasc Med

December 2024

Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Background: Artificial intelligence (AI) has been widely adopted for the prediction of latent shock occurrence in critically ill patients in intensive care units (ICUs). However, the usefulness of an ICU-based model to predict latent shock risk in an emergency department (ED) setting remains unclear. This study aimed to develop an AI model to predict latent shock risk in patients admitted to EDs.

View Article and Find Full Text PDF

Understanding cellular responses to external stimuli is critical for parsing biological mechanisms and advancing therapeutic development. High-content image-based assays provide a cost-effective approach to examine cellular phenotypes induced by diverse interventions, which offers valuable insights into biological processes and cellular states. In this paper, we introduce MorphoDiff, a generative pipeline to predict high-resolution cell morphological responses under different conditions based on perturbation encoding.

View Article and Find Full Text PDF

Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms.

View Article and Find Full Text PDF

Purpose: Sepsis-associated liver injury (SALI) leads to increased mortality in sepsis patients, yet no specialized tools exist for early risk assessment. This study aimed to develop and validate a risk prediction model for early identification of SALI before patients meet full diagnostic criteria.

Patients And Methods: This retrospective study analyzed 415 sepsis patients admitted to ICU from January 2019 to January 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!