Tattooing is a technique that introduces colored substances under the skin in order to color it permanently. Decomposition products of tattoo pigments produce numerous damages for the skin and other organs. We studied the effects of a commercial red ink tattoo, PR170, on embryos and nauplii using concentrations of 10, 20, and 40 mg/L. For , we applied the FETAX protocol analyzing survival, malformations, growth, heart rate, and the expression of genes involved in the development. In , we evaluated the toxicity with an immobilization test. Moreover, we investigated the production of ROS, antioxidant enzymes, and the expression of the ATP-binding cassette in both models. Our results indicate that PR170 pigment has nanoparticle dimensions, modifies the survival and the ATP-binding cassette activity, and induces oxidative stress that probably produces the observed effects in both models. Deformed embryos were observed in , probably due to the modification of expression of genes involved in development. The expression of pro-inflammatory cytokines was also modified in this amphibian. We think that these effects are due to the accumulation of PR170 and, in particular, to the presence of the azoic group in the chemical structure of this pigment. Further studies needed to better understand the effects of commercial tattoo inks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698971PMC
http://dx.doi.org/10.3390/biology10121308DOI Listing

Publication Analysis

Top Keywords

tattoo inks
8
effects commercial
8
expression genes
8
genes involved
8
involved development
8
atp-binding cassette
8
comparative toxicological
4
toxicological evaluation
4
tattoo
4
evaluation tattoo
4

Similar Publications

Background: We aim to study the potential association between tattoo ink exposure and development of certain types of cancers in the recently established Danish Twin Tattoo Cohort. Tattoo ink is known to transfer from skin to blood and accumulate in regional lymph nodes. We are concerned that tattoo ink induces inflammation at the deposit site, leading to chronic inflammation and increasing risk of abnormal cell proliferation, especially skin cancer and lymphoma.

View Article and Find Full Text PDF

Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.

View Article and Find Full Text PDF

Tattoos were a prevalent art form in pre-Hispanic South America exemplified by mummified human remains with preserved skin decoration that reflects the personal and cultural representations of their times. Tattoos are known to fade and bleed over time and this is compounded in mummies by the decay of the body, inhibiting the ability to examine the original art. Laser-stimulated fluorescence (LSF) produces images based on fluorescence emitted from within the target.

View Article and Find Full Text PDF

Background: The new EU regulation on tattoo inks in force January 2022 in a hitherto unregulated market marks a historical change.

Objective: Mapping of the thousands of tattoo inks de facto used in studios before the new EU regulation and establish a historical reference to tattoo customer exposure, ink toxicology assessment, clinical complications, and the impact on tattooing businesses.

Method: A tattooist-operated electronic system (InkBase) for ink registration required by law is used in Denmark since 2018.

View Article and Find Full Text PDF

The autoimmune/inflammatory syndrome induced by adjuvants (ASIA) is a rare condition caused by an immune response associated with over-reactivity of the immune system, triggered by adjuvants. The most common adjuvants are aluminium salts but can also be bioimplants or infectious agents. It may lead to the development of various autoimmunologic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!