The Impact of Medium Chain and Polyunsaturated ω-3-Fatty Acids on Amyloid-β Deposition, Oxidative Stress and Metabolic Dysfunction Associated with Alzheimer's Disease.

Antioxidants (Basel)

Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty NT-Natural Science and Technology, Saarland University, D-66123 Saarbrücken, Germany.

Published: December 2021

Alzheimer's disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698946PMC
http://dx.doi.org/10.3390/antiox10121991DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
medium chain
8
polyunsaturated ω-3-fatty
8
ω-3-fatty acids
8
alzheimer's disease
8
energy metabolism
8
impact medium
4
chain polyunsaturated
4
acids amyloid-β
4
amyloid-β deposition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!