In general, quantum systems most likely undergo open-system dynamics due to their smallness and sensitivity. Energy storage devices, so-called quantum batteries, are not excluded from this phenomenon. Here, we study fundamental bounds on the power of open quantum batteries from the geometric point of view. By defining an activity operator, a tight upper bound on the charging power is derived for the open quantum batteries in terms of the fluctuations of the activity operator and the quantum Fisher information. The variance of the activity operator may be interpreted as a generalized thermodynamic force, while the quantum Fisher information describes the speed of evolution in the state space of the battery. The thermodynamic interpretation of the upper bound is discussed in detail. As an example, a model for the battery, taking into account the environmental effects, is proposed, and the effect of dissipation and decoherence during the charging process on both the stored work and the charging power is investigated. Our results show that the upper bound is saturated in some time intervals. Also, the maximum value of both the stored work and the corresponding power is achieved in the non-Markovian underdamped regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.054117 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou 350117, China.
This study proposes an efficient, cost-effective, and industrially scalable electrode modulation strategy, which involves directly adding a small amount of high thermal and high conductance TiN and well interface compatible WO to NaNiFeMnO (NaNFMO-TW) cathode slurry, to effectively reduce electrode polarization and interface side reactions, reduce the Ohmic heat and polarization heat of the battery, and ultimately to significantly improve the sodium-ion storage and thermal safety performance of the battery. At room temperature (RT) and 1C rate, the modified NaNFMO-TW electrode exhibits a reversible capacity of ∼95 mAh g after 300 cycles, with a capacity retention rate of 82.6%, being higher than the 50.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
In this paper, we present a molecular dynamics study of the structural and dynamical properties of γ-valerolactone (GVL) both as a standalone solvent and in electrolyte formulations for electrochemistry applications. This study involves developing a new parameterization of a polarizable forcefield and applying it to simulate pure GVL and selected salt solutions. The forcefield was validated with experimental bulk data and quantum mechanical calculations, with excellent agreement obtained in both cases.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Physics, MIT, Cambridge, MA 02139, USA.
Maximizing the amount of work harvested from an environment is important for a wide variety of biological and technological processes, from energy-harvesting processes such as photosynthesis to energy storage systems such as fuels and batteries. Here, we consider the maximization of free energy-and by extension, the maximum extractable work-that can be gained by a classical or quantum system that undergoes driving by its environment. We consider how the free energy gain depends on the initial state of the system while also accounting for the cost of preparing the system.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFNanoscale
January 2025
MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
The CO reduction reaction (CORR) and oxygen reduction reaction (ORR) show great promise for expanding the use of renewable energy sources and fostering carbon neutrality. Sn-based catalysts show CORR activity; however, they have been rarely reported in the ORR. Herein, we prepared a nitrogen-carbon structure loaded with Fe-doped Sn nanoparticles (Fe-Sn/NC), which has good ORR and CORR activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!