Origin of dispersionless transport in spite of thermal noise.

Phys Rev E

Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B 3X7.

Published: November 2021

The "dispersionless transport" of a weakly damped Brownian particle in a tilted periodic potential is defined by (i) a plateau of the particle's coordinate dispersion extending over a very broad time interval and (ii) by the impossibility to measure the diffusion coefficient within this plateau region. While the first part of this definition has been explained in the literature, the second part has been thought to follow from (i). Here, the impossibility to measure the diffusion coefficient is shown to be actually due to the wild fluctuations of the dispersion itself in the plateau region. An expression for the timescale over which a reliable determination of the diffusion coefficient is possible is derived. A procedure that allows accurate determination of the diffusion coefficient by observing the particle trajectory only within a small part of the plateau region is suggested and shown to be feasible by numerical simulations of a weakly damped Brownian particle in a tilted washboard potential.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.054113DOI Listing

Publication Analysis

Top Keywords

diffusion coefficient
16
plateau region
12
weakly damped
8
damped brownian
8
brownian particle
8
particle tilted
8
impossibility measure
8
measure diffusion
8
determination diffusion
8
origin dispersionless
4

Similar Publications

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

The film water, with an exceptional capacity to maintain a premelting, liquid-like state even under subzero conditions, provides a potential dynamic conduit for the movement of water in frozen soils. However, the distinctive structural and dynamic characteristics of film water have not been comprehensively elucidated. In this study, molecular dynamics (MD) simulations were conducted to examine the freezing of a system containing ice, water, silica, and gas.

View Article and Find Full Text PDF

Mapping the Energy Carrier Diffusion Tensor in Perovskite Semiconductors.

ACS Nano

January 2025

Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.

View Article and Find Full Text PDF

This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!