Fractional Brownian motion is a non-Markovian Gaussian process indexed by the Hurst exponent H∈(0,1), generalizing standard Brownian motion to account for anomalous diffusion. Functionals of this process are important for practical applications as a standard reference point for nonequilibrium dynamics. We describe a perturbation expansion allowing us to evaluate many nontrivial observables analytically: We generalize the celebrated three arcsine laws of standard Brownian motion. The functionals are: (i) the fraction of time the process remains positive, (ii) the time when the process last visits the origin, and (iii) the time when it achieves its maximum (or minimum). We derive expressions for the probability of these three functionals as an expansion in ɛ=H-1/2, up to second order. We find that the three probabilities are different, except for H=1/2, where they coincide. Our results are confirmed to high precision by numerical simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.054112 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.
View Article and Find Full Text PDFLangmuir
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
This work considers a stochastic form of an extended version of the Kairat-II equation by adding Browning motion into the deterministic equation. Two analytical approaches are utilized to derive analytical solutions of the modified equation. The first method is the modified Tanh technique linked with the Riccati equation, which is implemented to extract some closed-form solutions in the form of tangent and cotangent functions.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa City, Kanagawa Prefecture, 252-0882, Japan. Electronic address:
The adoption of residential renewable energy is pivotal for achieving the 'Net Zero' goal, yet financial assessments of household investments in this area remain complex due to dynamic market conditions. This study introduces a novel closed-form financial valuation framework for residential solar photovoltaic (PV) systems, explicitly addressing the uncertainties of electricity market price fluctuations (market risk) and energy policy changes (policy risk) using Geometric Brownian Motion (GBM). A case study in France demonstrates the framework's application, revealing that the discount rate is the most influential factor in solar PV valuation, followed by system lifespan and policy-driven Feed-in Tariff (FiT) rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!