The spatial critical shelter sizes above which populations would survive are investigated for the infection of hantavirus among rodent populations surrounded by a deadly environment. We show that the critical shelter sizes for the infected population and the susceptible population are different due to symmetry breaking in the reproduction and the transmission processes. Therefore, there exists a shelter size gap within which the infected population becomes extinct while only the susceptible population survives. With the field data reported in the literature, we estimate that, if one confines the rodent population within a stripe region surrounded by a deadly environment with the shorter dimension between 335.5±27.2m and 547.9±78.3m, the infected population would become extinct. In addition, we introduce two factors that influence the movement of rodents, namely, the spatial asymmetry of the landscape and the sociality of rodents, to study their effects on the shelter size gap. The effects on the critical size due to environmental bias are twofold: it enhances the overall competition among rodents which increases the critical size, but on the other hand it promotes the spread of the hantavirus which reduces the critical size for the infected population. On the contrary, the sociality of rodents gives rise to a more localized population profile which promotes the spread of the hantavirus and reduces the shelter size gap. The results shed light on a possible strategy of eliminating hantavirus while preserving the integrity of food webs in ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.054401 | DOI Listing |
Pest Manag Sci
January 2025
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.
View Article and Find Full Text PDFEquine Vet J
January 2025
Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, The Royal Veterinary College, London, UK.
Background: Sycamore tree-derived hypoglycin A (HGA) toxin causes atypical myopathy (AM), an acute, equine pasture-associated rhabdomyolysis but incidence fluctuates.
Objectives: Investigate whether tree or environmental factors influence HGA concentration in sycamore material and are associated with AM relative risk.
Study Design: Retrospective and experimental prospective study.
Med Vet Entomol
January 2025
Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Dermacentor variabilis (Say) (Acari: Ixodidae) is a vector for pathogens that can impact human and animal health. The geographic range of this species is expanding, but there are some areas with limited up-to-date information on the distribution of D. variabilis.
View Article and Find Full Text PDFClin Genet
January 2025
Department of Medical Genetics, Medical Faculty, Aksaray University, Aksaray, Turkiye.
Inherited retinal diseases (IRDs) constitute a heterogeneous group of clinically and genetically diverse conditions, standing as a primary cause of visual impairment among individuals aged 15-45, with an estimated incidence of 1:2000. Our study aimed to comprehensively evaluate the genetic variants underlying IRDs in the Turkish population. This study included 50 unrelated Turkish IRD patients and their families.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!