Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The lipid cubic phase (LCP) is a nanomaterial composed of water channels surrounded by lipid bilayers. LCPs are stable at room temperature and are biocompatible. These features make the lipid cubic phases similar to biological membranes, and hence, are favorable for embedding membrane proteins. We show that the monoolein cubic phase deposited on the electrode forms a 3D lipid bilayer film convenient for electrochemical investigations of membrane proteins. In this research, we studied the effect of embedding an ionophoric peptide, gramicidin A (gA), on the structure and properties of the LCP film. The phase identity and structural parameters of the gramicidin-doped phase were characterized by small-angle X-ray scattering (SAXS). The potassium ion transport through the film were studied by electroanalytical methods: alternating current voltammetry (ACV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). Increased values for the current of the gramicidin-doped cubic phase compared to the empty cubic phase and changes of the EIS parameters confirmed that the peptide remained in the film in its active dimeric form. Our results show that the LCP can be considered a suitable 3D biomimetic film for the investigation of ion channels and other transporting membrane proteins, and for their application in electrochemical sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2021.108042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!