This study's primary purpose was to investigate the possible amelioration of limited irrigation conditions by mycorrhiza (AMF), vermicompost, and green manure for lingrain plants. This experiment was accomplished as a factorial based on the completely randomized design with three replications. The first factor was green manure (without green manure and with Trifolium pratense as green manure); the second factor consisted of Rhizophagus irregularis mycorrhiza, vermicompost, a combination of mycorrhiza and vermicompost and none of them, and also the third factor was irrigation regime (full irrigation and late-season water limitation). Green manure, vermicompost, and mycorrhiza single-use enhanced the plant's underwater limitation conditions compared to the control. However, vermicompost and green manure or mycorrhiza developed a positive synergistic effect on most traits. Combining green manure with the dual fertilizer (mycorrhiza + vermicompost) resulted in the vermicompost and mycorrhiza synergistic effects, especially under limited irrigation. Consequently, the combination of green manure, mycorrhiza, and vermicompost experienced the highest amount of leaf relative water content, root colonization, leaf nitrogen, chlorophyll a, chlorophyll b, carotenoids, antioxidant enzymes activity, grain yield, and oil yield, which would lead to more resistance of plants to limited irrigation conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700020 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261225 | PLOS |
Heliyon
July 2024
Department of Business Sciences - Management & Innovation Systems/DISA-MIS, University of Salerno, Italy.
This article aims to provide a systematic review of the literature on animal biomass and biogas plants through an analysis of externalities and benefits in economic, social, and environmental terms. In recent years, the spread of biogas plants has played an important role, especially in rural areas, generating benefits not only for the individual farm but for entire communities, contributing to the reduction of energy poverty and, at the same time, promoting the production of energy and organic manure. In light of the findings, the study argues that: (a) more public subsidies are needed; (b) the deployment of an appropriate policy mix would encourage the spread of small and medium-sized plants, with a reduction in road transport; and (c) targeted and diversified investments are needed on a geographic-by-geographic basis.
View Article and Find Full Text PDFFront Antibiot
June 2024
College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia.
J Environ Manage
January 2025
Federal Rural University of Pernambuco, Department of Agronomy, Dom Manoel de Medeiros Street, w/n, Recife, PE, 52171-900, Brazil. Electronic address:
Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS, US Arid Land Agricultural Research Center, 21881 North Cardon Lane Maricopa, Maricopa, AZ 85138, USA.
As farming practices evolve and climate conditions shift, achieving sustainable food production for a growing global population requires innovative strategies to optimize environmentally friendly practices and minimize ecological impacts. Agroecosystems, which integrate agricultural practices with the surrounding environment, play a vital role in maintaining ecological balance and ensuring food security. Rhizosphere management has emerged as a pivotal approach to enhancing crop yields, reducing reliance on synthetic fertilizers, and supporting sustainable agriculture.
View Article and Find Full Text PDFPLoS One
January 2025
School of Economics and Management, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
The utilization of manure resources is an important measure to promote the development of agricultural green low-carbon cycle and solve the challenges associated with the current large-scale development of the livestock and poultry breeding industry. Based on the survey data of pig farmers in Qingdao, Shandong Province, China, this paper constructs a theoretical analysis framework of pig breeding scale and technical cognition on the utilization behavior of livestock and poultry manure resources of pig farmers. The binary Logit model and the moderating effect model are used to deeply explore the scale effect of breeding scale on the utilization behavior of pig farmers' manure resources, and the moderating effect of technical cognition on the influence of breeding scale on the utilization behavior of manure resources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!