Hip adductor spasticity is a contributing factor to hip dislocation in patients with cerebral palsy (CP). We hypothesized that botulinum toxin injected into the hip adductor muscles would reduce spasticity and help prevent hip dislocation. Twenty patients with bilateral spastic CP aged 2 to 10 years with gross motor function classification system level IV or V were included. Botulinum toxin was injected into the hip adductor muscles at baseline and at 6-month follow-up. Muscle tone was measured with an eight-channel surface electromyography (EMG) recorder. A hip X-ray was performed, and Reimer's hip migration index (MI) was measured. The Wilcoxon signed-rank test was used to compare the surface EMG values of the hip muscles at baseline and follow-up. The mean root mean square surface EMG value of the hip adductor muscles was significantly reduced at 1, 2, 3, and 7 months after the first injection, up to approximately 53% of the baseline. The 1-year progression of the hip MI was -0.04%. Repeated sessions of botulinum toxin injections at the hip adductor muscles significantly reduced muscle tone and hip displacement. A botulinum toxin injection may be used as an adjunctive treatment in the prevention of hip dislocation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707328 | PMC |
http://dx.doi.org/10.3390/toxins13120872 | DOI Listing |
Microorganisms
December 2024
Department of University Program for Seniors, University of Vigo, E.E. Industrial Rúa Torrecedeira 86, Vigo Campus, 36201 Vigo, Spain.
This study aimed to determine whether botulinum toxin type A injected into the muscles of the upper third of the face has antidepressant effects in patients diagnosed with depression. Studies seeking a relationship between botulinum toxin type A and its antidepressant effects were considered in this review. All studies concluded that the facial expression muscles present positive feedback to the brain and enhance mood states.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
Tetanus neurotoxins (TeNT) and botulinum neurotoxins (BoNTs) are closely related ~150 kDa protein toxins that together comprise the group of clostridial neurotoxins (CNTs) expressed by various species of . While TeNT is expressed as a single polypeptide, BoNTs are always produced alongside multiple non-toxic proteins that form a stabilizing complex with BoNT and are encoded in a conserved toxin gene cluster. It is unknown how evolved without a similar gene cluster and why complex-free TeNT is secreted as a stable and soluble protein by , whereas complexing proteins appear to be essential for BoNT stability in culture supernatants of .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Applied Biological Chemistry, Graduate School of Environmental Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan.
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.
View Article and Find Full Text PDFJ Clin Med
December 2024
Unit of Hand Surgery, Microsurgery and Reconstructive, Department of Orthopaedics and Traumatology, CTO Hospital, 10126 Turin, Italy.
Neonatal brachial plexus palsy (NBPP) is a flaccid paralysis of the upper limbs that occurs in about 0.4 percent of live births. This condition can produce permanent disabilities; to date, there is no consensus on protocols to be applied for the rehabilitation of children with this condition.
View Article and Find Full Text PDFBiomedicines
December 2024
National Institute of Public Health NIH-National Research Institute, Chocimska 24, 00-791 Warsaw, Poland.
The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!