In Serbia, aspergillus ear rot caused by the disease pathogen () was first detected in 2012 under both field and storage conditions. Global climate shifts, primarily warming, favour the contamination of maize with aflatoxins in temperate climates, including Serbia. A five-year study (2012-2016) comprising of 46 strains isolated from maize kernels was performed to observe the morphological, molecular, pathogenic, and toxigenic traits of this pathogen. The HPLC method was applied to evaluate mycotoxin concentrations in this causal agent. The isolates synthesised mainly aflatoxin AFB1 (84.78%). The percentage of isolates synthesising aflatoxin AFG1 (15.22%) was considerably lower. Furthermore, the concentration of AFG1 was higher than that of AFB1 in eight isolates. The polyphase approach, used to characterise isolates, showed that they were species. This identification was verified by the multiplex RLFP-PCR detection method with the use of restriction enzymes. These results form an excellent baseline for further studies with the aim of application in the production, processing, and storage of cereal grains and seeds, and in technological processes to ensure the safe production of food and feed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704542PMC
http://dx.doi.org/10.3390/toxins13120847DOI Listing

Publication Analysis

Top Keywords

maize kernels
8
toxigenic species
4
species originating
4
originating maize
4
kernels grown
4
grown serbia
4
serbia serbia
4
serbia aspergillus
4
aspergillus ear
4
ear rot
4

Similar Publications

Fungal toxins in local food supplies are a critical environmental health risk to communities globally. To better characterize hypothesized toxin control points among households, we conducted household surveys across four departments (first administrative division) in Guatemala. Data gathered included maize harvesting, processing, storage, and traditional nixtamalization practices.

View Article and Find Full Text PDF

Transgenic corn (Zea mays L.) expressing insecticidal toxins from Bacillus thuringiensis (Bt) helps to control or suppress injury from a range of target insect pests. This study summarizes the yield benefits of Bt corn from field trials in Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2023.

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg.

View Article and Find Full Text PDF

Traditional maize possesses low concentrations of provitamin-A and vitamin-E, leading to various health concerns. Mutant alleles of and that enhance β-carotene (provitamin-A) and α-tocopherol (vitamin-E), respectively, in maize kernels have been explored in several biofortification programs. For genetic improvement of these target nutrients, uniplex-PCR assays are routinely used in marker-assisted selection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!