Developing manipulators for kinesthetic haptic interfaces is challenging due to a large number of design parameters. We propose a novel optimization-driven design approach taking into account the properties of the entire workspace of the human arm instead of a specific task. To achieve this, models of both the human arm and the haptic manipulator are derived and deployed in a suitable objective function, which simultaneously considers poses, velocities, accelerations, as well as displayed forces and torques. A detailed analysis and experiments with real-world motion tracking data show that the proposed method is capable of finding meaningful design parameters to enable good haptic transparency.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TOH.2021.3137938DOI Listing

Publication Analysis

Top Keywords

optimization-driven design
8
kinesthetic haptic
8
design parameters
8
human arm
8
design kinesthetic
4
haptic
4
haptic interface
4
interface human-like
4
human-like capabilities
4
capabilities developing
4

Similar Publications

Marine climate significantly influences the spatial morphology of coastal village's streets. However, research on coastal villages lacks spatial parameterization analysis that can cope with the complex climatic environment. Focusing on the coastal village's street in Fuzhou City, China, this paper studies the relationship between street space morphology and the impact of extreme heat and wind conditions.

View Article and Find Full Text PDF

Medical image registration via neural fields.

Med Image Anal

October 2024

University of California, Irvine, Irvine, CA 92697, USA. Electronic address:

Image registration is an essential step in many medical image analysis tasks. Traditional methods for image registration are primarily optimization-driven, finding the optimal deformations that maximize the similarity between two images. Recent learning-based methods, trained to directly predict transformations between two images, run much faster, but suffer from performance deficiencies due to domain shift.

View Article and Find Full Text PDF

Purpose: We propose the utilization of patient-specific concentric-tube robots (CTRs) whose designs are optimized to enhance their volumetric reachability of the renal stone, thus reducing the morbidities associated with percutaneous nephrolithotomy procedures. By employing a nested optimization-driven scheme, this work aims to determine a single surgical tract through which the patient-tailored CTR is deployed. We carry out a sensitivity analysis on the combined percutaneous access and optimized CTR design with respect to breathing-induced excursion of the kidneys based on preoperative images.

View Article and Find Full Text PDF

Redirected walking allows users to naturally locomote within virtual environments that are larger than or different in layout from the physically tracked space. In this paper, we proposed novel optimization-driven alignment-based and Artificial Potential Field (APF) redirected walking controllers, as well as an integrated version of the two. The first two controllers employ objective functions of one variable, which is the included angle between the user's heading vector and the target vector originating from the user's physical position.

View Article and Find Full Text PDF

Structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive response to drought.

Sci Adv

March 2023

Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.

Strategies to activate abscisic acid (ABA) receptors and boost ABA signaling by small molecules that act as ABA receptor agonists are promising biotechnological tools to enhance plant drought tolerance. Protein structures of crop ABA receptors might require modifications to improve recognition of chemical ligands, which in turn can be optimized by structural information. Through structure-based targeted design, we have combined chemical and genetic approaches to generate an ABA receptor agonist molecule (iSB09) and engineer a CsPYL1 ABA receptor, named CsPYL1, which efficiently binds iSB09.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!