A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spectral Analysis of Tissue Displacement for Cardiac Activation Mapping: Ex Vivo Working Heart and In Vivo Study. | LitMetric

AI Article Synopsis

  • Myocardial activation characterization is essential for understanding cardiac arrhythmias, and this study explores a new method using electromechanical wave imaging (EWI) to track heart contraction.
  • A new analysis technique was validated with ex vivo data from two heart models, showing minimal error when compared to the standard EWI method.
  • Pilot trials on open-chest pigs demonstrated the feasibility of mapping cardiac activation during different rhythms, successfully capturing contraction patterns in the left ventricle and suggesting EWI's potential for clinical use.

Article Abstract

Characterizing myocardial activation is of major interest for understanding the underlying mechanism of cardiac arrhythmias. Electromechanical wave imaging (EWI) is an ultrafast ultrasound-based method used to map the propagation of the local contraction triggered by electrical activation of the heart. This study introduces a novel way to characterize cardiac activation based on the time evolution of the instantaneous frequency content of the cardiac tissue displacement curves. The first validation of this method was performed on an ex vivo dataset of 36 acquisitions acquired from two working heart models in paced rhythms. It was shown that the activation mapping described by spectral analysis of interframe displacement is similar to the standard EWI method based on zero-crossing of interframe strain. An average median error of 3.3 ms was found in the ex vivo dataset between the activation maps obtained with the two methods. The feasibility of mapping cardiac activation by EWI was then investigated on two open-chest pigs during sinus and paced rhythms in a pilot trial of cardiac mapping with an intracardiac probe. Seventy-five acquisitions were performed with reasonable stability and analyzed with the novel algorithm to map cardiac contraction propagation in the left ventricle (LV). Sixty-one qualitatively continuous isochrones were successfully computed based on this method. The region of contraction onset was coherently described while pacing in the imaging plane. These findings highlight the potential of implementing EWI acquisition on intracardiac probes and emphasize the benefit of performing short time-frequency analysis of displacement data to characterize cardiac activation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2021.3137989DOI Listing

Publication Analysis

Top Keywords

cardiac activation
16
spectral analysis
8
tissue displacement
8
cardiac
8
activation
8
activation mapping
8
working heart
8
characterize cardiac
8
vivo dataset
8
paced rhythms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!