Designing Direct Z-Scheme Heterojunctions Enabled by Edge-Modified Phosphorene Nanoribbons for Photocatalytic Overall Water Splitting.

J Phys Chem Lett

Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230 026, China.

Published: January 2022

Direct Z-scheme photocatalyst possess promising potential to utilize solar radiation for photocatalytic overall water splitting; however, the design and characterization remain challenging. Here, we construct and verify a direct Z-scheme heterojunction using edge-modified phosphorene-nanoribbons (X-PNRs, where X = OH and OCN) with first-principles ground-state and excited-state density functional theory (DFT) calculations. The ground-state calculations provide fundamental properties such as geometric structure and band alignment. The linear-response time-dependent DFT (LR-TDDFT) calculations exhibit the photogenerated charge distribution and demonstrate the generation of interlayer excitons in heterojunctions, which are advantageous to the electron-hole recombination in Z-scheme heterojunctions. The ultrafast charge transfer at the interface studied by time-dependent ab initio nonadiabatic molecular dynamics (NAMD) simulations indicates that interlayer electron-hole recombination is prior to intralayer recombination for the OH/OCN-PNRs heterojunction, showing the characteristics of a Z-scheme heterojunction. Therefore, our computational work provides a universal strategy to design direct Z-scheme heterojunction photocatalysts for overall water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c03527DOI Listing

Publication Analysis

Top Keywords

direct z-scheme
16
water splitting
12
z-scheme heterojunction
12
z-scheme heterojunctions
8
photocatalytic water
8
electron-hole recombination
8
z-scheme
6
designing direct
4
heterojunctions enabled
4
enabled edge-modified
4

Similar Publications

How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.

View Article and Find Full Text PDF

A highly versatile Z-scheme heterostructure, HoSmSbO/YbDyBiNbO (HYO), was synthesized using an ultrasonic-assisted solvent thermal method. The HYO heterojunction, composed of dual ABO compounds, exhibits superior separation of photogenerated carriers due to its efficient Z-scheme mechanism. The synergistic properties of HoSmSbO and YbDyBiNbO, particularly the excellent visible light absorption, enable HYO to achieve exceptional photocatalytic performance in the degradation of fenitrothion (FNT).

View Article and Find Full Text PDF

Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.

View Article and Find Full Text PDF

Two-dimensional van der Waals heterojunction materials have demonstrated significant potential for photocatalytic water splitting in hydrogen production, owing to their distinct electronic and optical properties. Among these materials, direct Z-scheme heterojunctions have attracted considerable attention in recent research. In this study, a novel CdO/ZrSSe heterojunction is designed using first-principles calculations.

View Article and Find Full Text PDF

The urgent need for solar electricity production is critical for ensuring energy security and mitigating climate change. Achieving the optimal optical bandgap and effective carrier separation, essential for high-efficiency solar cells, remains a significant challenge when utilizing a single material. In this study, we design a BAs/GeC heterostructure using density functional theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!