A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

What is next for screening for undiagnosed atrial fibrillation? Artificial intelligence may hold the key. | LitMetric

What is next for screening for undiagnosed atrial fibrillation? Artificial intelligence may hold the key.

Eur Heart J Qual Care Clin Outcomes

Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, 6 Clarendon Way, Leeds LS2 9DA, UK.

Published: June 2022

Atrial fibrillation (AF) is increasingly common, though often undiagnosed, leaving many people untreated and at elevated risk of ischaemic stroke. Current European guidelines do not recommend systematic screening for AF, even though a number of studies have shown that periods of serial or continuous rhythm monitoring in older people in the general population increase detection of AF and the prescription of oral anticoagulation. This article discusses the conflicting results of two contemporary landmark trials, STROKESTOP and the LOOP, which provided the first evidence on whether screening for AF confers a benefit for people in terms of clinical outcomes. The benefit and efficiency of systematic screening for AF in the general population could be optimized by targeting screening to only those at higher risk of developing AF. For this purpose, evidence is emerging that prediction models developed using artificial intelligence in routinely collected electronic health records can provide strong discriminative performance for AF and increase detection rates when combined with rhythm monitoring in a clinical study. We consider future directions for investigation in this field and how this could be best aligned to the current evidence base to target screening in people at elevated risk of stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170568PMC
http://dx.doi.org/10.1093/ehjqcco/qcab094DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
elevated risk
8
systematic screening
8
rhythm monitoring
8
general population
8
increase detection
8
screening
6
screening undiagnosed
4
undiagnosed atrial
4
atrial fibrillation?
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!