Toxic crabs of the family Xanthidae contain saxitoxins (STXs) and/or tetrodotoxin (TTX), but the toxin ratio differs depending on their habitat. In the present study, to clarify within reef variations in the toxin profile of xanthid crabs, we collected specimens of the toxic xanthid crab and their sampling location within a single reef (Yoshihara reef) on Ishigaki Island, Okinawa Prefecture, Japan, in 2018 and 2019. The STXs/TTX content within the appendages and viscera or stomach contents of each specimen was determined by instrumental analyses. Our findings revealed the existence of three zones in Yoshihara reef; one in which many individuals accumulate extremely high concentrations of STXs (northwestern part of the reef; NW zone), another in which individuals generally have small amounts of TTX but little STXs (central part of the reef; CTR zone), and a third in which individuals generally exhibit intermediate characteristics (southeastern part of the reef; SE zone). Furthermore, light microscopic observations of the stomach contents of crab specimens collected from the NW and CTR zones revealed that ascidian spicules of the genus were dominant in the NW zone, whereas those of the genus were dominant in the CTR zone. Although the toxicity of these ascidians is unknown, ascidians are considered good candidate source organisms of STXs harbored by toxic xanthid crabs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705613 | PMC |
http://dx.doi.org/10.3390/md19120670 | DOI Listing |
Toxins (Basel)
December 2024
Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA.
Kojic acid is a secondary metabolite with strong chelating and antioxidant properties produced by and . Although antioxidants and chelators are important virulence factors for plant pathogens, the ecological role of kojic acid remains unclear. We previously observed a greater gene expression of antioxidants, especially kojic acid, by non-aflatoxigenic when co-cultured with aflatoxigenic Aflatoxin production was also reduced.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake , focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece.
Aflatoxin M1 (AFM1) exposure through dairy products is associated with adverse health effects, including hepatotoxicity and carcinogenicity. Therefore, the AFM1 presence in milk and dairy products is strictly regulated. In this context, the current work focuses on the investigation of different competitive enzyme immunoassay configurations for the determination of AFM1 in milk with high sensitivity and short assay duration.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador.
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of and , using data from NCBI.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Nutrition, Dietetics & Food Science, Brigham Young University, Provo, UT 84602, USA.
Mycotoxins are toxins produced by fungi that contaminate many key food crops as they grow in the field and during storage. Specific mycotoxins are produced by different fungi. Each type of fungus and mycotoxin have their own optimal temperatures and water activities for growth and production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!