Immune Status and Hepatic Antioxidant Capacity of Gilthead Seabream Juveniles Fed Yeast and Microalga Derived β-glucans.

Mar Drugs

Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.

Published: November 2021

This work aimed to evaluate the effects of dietary supplementation with β-glucans extracted from yeast () and microalga () on gene expression, oxidative stress biomarkers and plasma immune parameters in gilthead seabream () juveniles. A practical commercial diet was used as the control (CTRL), and three others based on CTRL were further supplemented with different β-glucan extracts. One was derived from (diet MG) and two different extracts of 21% and 37% -derived β-glucans (defined as Phaeo21 and Phaeo37), to give a final 0.06% β-glucan dietary concentration. Quadruplicate groups of 95 gilthead seabream (initial body weight: 4.1 ± 0.1 g) were fed to satiation three times a day for 8 weeks in a pulse-feeding regimen, with experimental diets intercalated with the CTRL dietary treatment every 2 weeks. After 8 weeks of feeding, all groups showed equal growth performance and no changes were found in plasma innate immune status. Nonetheless, fish groups fed β-glucans supplemented diets showed an improved anti-oxidant status compared to those fed CTRL at both sampling points (i.e., 2 and 8 weeks). The intestinal gene expression analysis highlighted the immunomodulatory role of Phaeo37 diet after 8 weeks, inducing an immune tolerance effect in gilthead seabream intestine, and a general down-regulation of immune-related gene expression. In conclusion, the results suggest that the dietary pulse administration of a 37% enriched-β-glucans extract might be used as a counter-measure in a context of gut inflammation, due to its immune-tolerant and anti-oxidative effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704051PMC
http://dx.doi.org/10.3390/md19120653DOI Listing

Publication Analysis

Top Keywords

gilthead seabream
16
gene expression
12
immune status
8
seabream juveniles
8
yeast microalga
8
weeks
5
immune
4
status hepatic
4
hepatic antioxidant
4
antioxidant capacity
4

Similar Publications

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Ability of short-chain fatty acids to reduce inflammation and attract leucocytes to the inflamed skin of gilthead seabream (Sparus aurata L.).

Sci Rep

December 2024

Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.

The aim of the study was to investigate the potential preventive use of short-chain fatty acids (SCFAs) to modulate inflammatory responses in gilthead seabream (Sparus aurata) skin. Initially, in vitro experiments were conducted to evaluate the effects of various concentrations of butyric acid, acetic acid and propionic acid, as well as their combination, on the cytotoxicity and cell viability of three different cell lines. The results determined the safe concentration of SCFAs, which was then used for an in vivo study.

View Article and Find Full Text PDF

Red sea bream iridovirus (RSIV) occurs mainly at high water temperatures and infects more than 30 different species of fish. In Asia, infected fish cause mass mortality every year. Molecular diagnostics is a technology that efficiently detects and identifies a wide range of fish pathogens through rapid and sensitive analysis of their genetic material.

View Article and Find Full Text PDF

Hermetia illucens larvae oil as an alternative lipid source: Effects on immune function, antioxidant activity, and inflammatory response in gilthead seabream juveniles.

Comp Biochem Physiol B Biochem Mol Biol

December 2024

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.

Hermetia illucens larvae oil (HIO) is a promising new ingredient that can potentially be an alternative lipid source in aquafeeds. To assess its viability in gilthead seabream juvenile diets, a 10-week feeding trial was performed, and the effects on antioxidant, immune, and inflammatory responses were evaluated. Four diets were formulated to include HIO at increasing levels: 0, 4, 7.

View Article and Find Full Text PDF

Culturing fish myogenic cells in vitro holds significant potential to revolutionize aquaculture practices and support sustainable food production. However, advancement in in vitro culture technologies for skeletal muscle-derived myogenic cells have predominantly focused on mammals, with limited studies on fish. Scaffold-based three-dimensional (3D) culture systems for fish myogenic cells remain underexplored, highlighting a critical research gap compared to mammalian systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!