It has been well established in epidemiological studies and randomized controlled trials that habitual exercise is beneficial for brain health, such as cognition and mental health. Generally, it may be reasonable to say that the physiological benefits of acute exercise can prevent brain disorders in late life if such exercise is habitually/chronically conducted. However, the mechanisms of improvement in brain function via chronic exercise remain incompletely understood because such mechanisms are assumed to be multifactorial, such as the adaptation of repeated acute exercise. This review postulates that cerebral metabolism may be an important physiological factor that determines brain function. Among metabolites, the provision of lactate to meet elevated neural activity and regulate the cerebrovascular system and redox states in response to exercise may be responsible for exercise-enhanced brain health. Here, we summarize the current knowledge regarding the influence of exercise on brain health, particularly cognitive performance, with the underlying mechanisms by means of lactate. Regarding the influence of chronic exercise on brain function, the relevance of exercise intensity and modality, particularly high-intensity interval exercise, is acknowledged to induce "metabolic myokine" (i.e., lactate) for brain health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709217 | PMC |
http://dx.doi.org/10.3390/metabo11120813 | DOI Listing |
Neurology
September 2011
Banner Alzheimer's Institute, 901 E Willetta Street, Phoenix, AZ 85006, USA.
Arch Gen Psychiatry
August 2011
Banner Alzheimer's Institute, 901 E Willetta St., Phoenix, AZ 85006, USA.
Arch Neurol
October 2011
Division of Epidemiology, University of California, Berkeley, 94720-3190, USA.
Objective: To delineate the trajectories of Aβ42 level in cerebrospinal fluid (CSF), fludeoxyglucose F18 (FDG) uptake using positron emission tomography, and hippocampal volume using magnetic resonance imaging and their relative associations with cognitive change at different stages in aging and Alzheimer disease (AD).
Design: Cohort study.
Setting: The 59 study sites for the Alzheimer's Disease Neuroimaging Initiative.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!