Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aerobic training is known to influence cognitive processes, such as memory and learning, both in animal models and in humans. Particularly, in vitro and in vivo studies have shown that aerobic exercise can increase neurogenesis in the dentate gyrus, improve hippocampal long-term potentiation (LTP), and reduce age-related decline in mnemonic function. However, the underlying mechanisms are not yet fully understood. Based on this evidence, the aim of our study was to verify whether the application of two aerobic training protocols, different in terms of speed and speed variation, could modulate synaptic plasticity in a young murine model. Therefore, we assessed the presence of any functional changes by extracellular recordings in vitro in mouse hippocampal slices and structural alterations by transmission electron microscopy (TEM). Our results showed that an aerobic training protocol, well designed in terms of speed and speed variation, significantly contributes to improving synaptic plasticity and hippocampal ultrastructure, optimizing its benefits in the brain. Future studies will aim to clarify the underlying biological mechanisms involved in the modulation of synaptic plasticity induced by aerobic training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706318 | PMC |
http://dx.doi.org/10.3390/jfmk6040101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!