Currently, there is growing scientific interest in the development of more economic, efficient and environmentally friendly municipal wastewater treatment technologies. Laboratory and pilot-scale surveys have revealed that the anaerobic membrane bioreactor (AnMBR) is a promising alternative for municipal wastewater treatment. Anaerobic membrane bioreactor technology combines the advantages of anaerobic processes and membrane technology. Membranes retain colloidal and suspended solids and provide complete solid-liquid separation. The slow-growing anaerobic microorganisms in the bioreactor degrade the soluble organic matter, producing biogas. The low amount of produced sludge and the production of biogas makes AnMBRs favorable over conventional biological treatment technologies. However, the AnMBR is not yet fully mature and challenging issues remain. This work focuses on fundamental aspects of AnMBRs in the treatment of municipal wastewater. The important parameters for AnMBR operation, such as pH, temperature, alkalinity, volatile fatty acids, organic loading rate, hydraulic retention time and solids retention time, are discussed. Moreover, through a comprehensive literature survey of recent applications from 2009 to 2021, the current state of AnMBR technology is assessed and its limitations are highlighted. Finally, the need for further laboratory, pilot- and full-scale research is addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703433 | PMC |
http://dx.doi.org/10.3390/membranes11120967 | DOI Listing |
Biotechnol Notes
December 2024
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.
Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.
View Article and Find Full Text PDFChemosphere
January 2025
Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!