Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cross-flow membrane ultrafiltration (UF) is used for the enrichment and purification of small colloidal particles and proteins. We explore the influence of different membrane geometries on the particle transport in, and the efficiency of, inside-out cross-flow UF. For this purpose, we generalize the accurate and numerically efficient modified boundary layer approximation (mBLA) method, developed in recent work by us for a hollow cylindrical membrane, to parallel flat sheet geometries with one or two solvent-permeable membrane sheets. Considering a reference dispersion of Brownian hard spheres where accurate expressions for its transport properties are available, the generalized mBLA method is used to analyze how particle transport and global UF process indicators are affected by varying operating parameters and the membrane geometry. We show that global process indicators including the mean permeate flux, the solvent recovery indicator, and the concentration factor are strongly dependent on the membrane geometry. A key finding is that irrespective of the many input parameters characterizing an UF experiment and its membrane geometry, the process indicators are determined by three independent dimensionless variables only. This finding can be very useful in the design, optimization, and scale-up of UF processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705108 | PMC |
http://dx.doi.org/10.3390/membranes11120960 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!