A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Minimizing Cholesterol-Induced Aggregation of Membrane-Interacting DNA Origami Nanostructures. | LitMetric

DNA nanotechnology provides methods for building custom membrane-interacting nanostructures with diverse functions, such as shaping membranes, tethering defined numbers of membrane proteins, and transmembrane nanopores. The modification of DNA nanostructures with hydrophobic groups, such as cholesterol, is required to facilitate membrane interactions. However, cholesterol-induced aggregation of DNA origami nanostructures remains a challenge. Aggregation can result in reduced assembly yield, defective structures, and the inhibition of membrane interaction. Here, we quantify the assembly yield of two cholesterol-modified DNA origami nanostructures: a 2D DNA origami tile (DOT) and a 3D DNA origami barrel (DOB), by gel electrophoresis. We found that the DOT assembly yield (relative to the no cholesterol control) could be maximised by reducing the number of cholesterols from 6 to 1 (2 ± 0.2% to 100 ± 2%), optimising the separation between adjacent cholesterols (64 ± 26% to 78 ± 30%), decreasing spacer length (38 ± 20% to 95 ± 5%), and using protective ssDNA 10T overhangs (38 ± 20% to 87 ± 6%). Two-step folding protocols for the DOB, where cholesterol strands are added in a second step, did not improve the yield. Detergent improved the yield of distal cholesterol configurations (26 ± 22% to 92 ± 12%), but samples re-aggregated after detergent removal (74 ± 3%). Finally, we confirmed functional membrane binding of the cholesterol-modified nanostructures. These findings provide fundamental guidelines to reducing the cholesterol-induced aggregation of membrane-interacting 2D and 3D DNA origami nanostructures, improving the yield of well-formed structures to facilitate future applications in nanomedicine and biophysics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707602PMC
http://dx.doi.org/10.3390/membranes11120950DOI Listing

Publication Analysis

Top Keywords

dna origami
24
origami nanostructures
16
cholesterol-induced aggregation
12
assembly yield
12
aggregation membrane-interacting
8
dna
8
membrane-interacting dna
8
nanostructures dna
8
nanostructures
7
origami
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!