Prediction of Protein Sites and Physicochemical Properties Related to Functional Specificity.

Bioengineering (Basel)

Computational Systems Biology Group, Systems Biology Department, National Centre for Biotechnology (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain.

Published: December 2021

Specificity Determining Positions (SDPs) are protein sites responsible for functional specificity within a family of homologous proteins. These positions are extracted from a family's multiple sequence alignment and complement the fully conserved positions as predictors of functional sites. SDP analysis is now routinely used for locating these specificity-related sites in families of proteins of biomedical or biotechnological interest with the aim of mutating them to switch specificities or design new ones. There are many different approaches for detecting these positions in multiple sequence alignments. Nevertheless, existing methods report the potential SDP positions but they do not provide any clue on the physicochemical basis behind the functional specificity, which has to be inferred a-posteriori by manually inspecting these positions in the alignment. In this work, a new methodology is presented that, concomitantly with the detection of the SDPs, automatically provides information on the amino-acid physicochemical properties more related to the change in specificity. This new method is applied to two different multiple sequence alignments of homologous of the well-studied RasH protein representing different cases of functional specificity and the results discussed in detail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698372PMC
http://dx.doi.org/10.3390/bioengineering8120201DOI Listing

Publication Analysis

Top Keywords

functional specificity
16
multiple sequence
12
protein sites
8
physicochemical properties
8
sequence alignments
8
specificity
6
positions
6
functional
5
prediction protein
4
sites
4

Similar Publications

The Promising Biological Role of Postbiotics in Treating Human Infertility.

Probiotics Antimicrob Proteins

January 2025

Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran.

Infertility poses a global challenge that impacts a significant proportion of the populace. Presently, there is a substantial emphasis on investigating the potential of probiotics and their derivatives, called postbiotics, as an alternative therapeutic strategy for addressing infertility. The term of "postbiotics" refers to compounds including peptides, enzymes, teichoic acids, and muropeptides derived from peptidoglycans, polysaccharides, proteins, and organic acids that are excreted by living bacteria or released after bacterial lysis.

View Article and Find Full Text PDF

Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.

View Article and Find Full Text PDF

Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.

Adv Biotechnol (Singap)

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!