Magnetic Resonance Imaging of the Cervical Spine: Frequency of Abnormal Findings with Relation to Age.

Medicines (Basel)

Department of Radiology, King Fahad Hospital, Albaha 65515, Saudi Arabia.

Published: December 2021

Background: Patients with neck pain are frequently encountered in cervical spine (C-spine) magnetic resonance imaging (MRI) practice. However, the exact distribution and prevalence of cervical abnormalities are not known.

Aim: The aim of this study is to evaluate the association between age, gender, and prevalence of abnormal cervical MRI findings.

Methods: Records of 111 cervical MRIs were collected in 12 months from January to December 2019 from adults aged 20-89 years who were referred from neurosurgery, neurology, and orthopedic clinics. Findings were classified and analyzed using the Statistical Package for Social Science (SPSS), version 24.0 (IBM, Armonk, NY, USA). The chi-square test was used to determine the association between demographics and abnormalities using a significance of = 0.05.

Results: The majority of patients were female (72.1%). The number of abnormal incidences increased with age until it reached a peak at ages 50-59. Spondylodegenerative changes were the most frequent finding, which was present in 52.2% of the total sample, and was followed by disc bulge (25.2%). Incidences increased in lower discs, with C5-C6 being the most frequent in 65% of the total sample. Younger males in their 20s had more injuries than females of the same age. However, this rate was reversed in patients over 40, as women were the dominant gender among patients in their 40s with cervical injuries, with a rate of 81.5%.

Conclusion: In our study, we found that older patients developed more C-spine injuries. Gender may play a role in the rate of incidents. However, we did not find any significant differences between men and women or between different types of abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708021PMC
http://dx.doi.org/10.3390/medicines8120077DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
8
resonance imaging
8
cervical spine
8
incidences increased
8
total sample
8
cervical
6
patients
5
imaging cervical
4
spine frequency
4
frequency abnormal
4

Similar Publications

Pituitary neuroendocrine tumors (PitNETS) are common intracranial tumors, but extrasellar or ectopic PitNETS are very rare and supposed to originate from some pituitary remnants. They are mostly found in sphenoidal sinus. But particularly, ectopic clival PitNETS are highly aggressive and can cause bone invasion and can be misdiagnosed as other lesions of the skull base such as chordomas.

View Article and Find Full Text PDF

Background And Objectives: Medical clearance for return to play (RTP) after sports-related concussion is based on clinical assessment. It is unknown whether brain physiology has entirely returned to preinjury baseline at the time of clearance. In this longitudinal study, we assessed whether concussed individuals show functional and structural MRI brain changes relative to preinjury levels that persist beyond medical clearance.

View Article and Find Full Text PDF

Objective: To quantitatively and qualitatively compare directly two types of cisternography images for diagnosing trigeminal neuralgia (TN) using 3-T magnetic resonance imaging.

Methods: This prospective study recruited 64 patients with a clinical diagnosis or suspicion of TN. Patients were examined through the three-dimensional (3D) Constructive Interference in Steady State (CISS) and Sampling Perfection with Application-optimized Contrasts using different flip angle Evolutions (SPACE) sequences.

View Article and Find Full Text PDF

Thermosensory predictive coding underpins an illusion of pain.

Sci Adv

March 2025

Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.

The human brain has a remarkable ability to learn and update its beliefs about the world. Here, we investigate how thermosensory learning shapes our subjective experience of temperature and the misperception of pain in response to harmless thermal stimuli. Through computational modeling, we demonstrate that the brain uses a probabilistic predictive coding scheme to update beliefs about temperature changes based on their uncertainty.

View Article and Find Full Text PDF

Brain age gap (BAG), the deviation between estimated brain age and chronological age, is a promising marker of brain health. However, the genetic architecture and reliable targets for brain aging remains poorly understood. In this study, we estimate magnetic resonance imaging (MRI)-based brain age using deep learning models trained on the UK Biobank and validated with three external datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!