As a result of the steadily ongoing development of microfluidic cultivation (MC) devices, a plethora of setups is used in biological laboratories for the cultivation and analysis of different organisms. Because of their biocompatibility and ease of fabrication, polydimethylsiloxane (PDMS)-glass-based devices are most prominent. Especially the successful and reproducible cultivation of cells in microfluidic systems, ranging from bacteria over algae and fungi to mammalians, is a fundamental step for further quantitative biological analysis. In combination with live-cell imaging, MC devices allow the cultivation of small cell clusters (or even single cells) under defined environmental conditions and with high spatio-temporal resolution. Yet, most setups in use are custom made and only few standardised setups are available, making trouble-free application and inter-laboratory transfer tricky. Therefore, we provide a guideline to overcome the most frequently occurring challenges during a MC experiment to allow untrained users to learn the application of continuous-flow-based MC devices. By giving a concise overview of the respective workflow, we give the reader a general understanding of the whole procedure and its most common pitfalls. Additionally, we complement the listing of challenges with solutions to overcome these hurdles. On selected case studies, covering successful and reproducible growth of cells in MC devices, we demonstrate detailed solutions to solve occurring challenges as a blueprint for further troubleshooting. Since developer and end-user of MC devices are often different persons, we believe that our guideline will help to enhance a broader applicability of MC in the field of life science and eventually promote the ongoing advancement of MC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699335 | PMC |
http://dx.doi.org/10.3390/bios11120485 | DOI Listing |
Microbiol Mol Biol Rev
January 2025
General Microbiology, Technische Universität Dresden, Dresden, Germany.
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole.
View Article and Find Full Text PDFAstrobiology
January 2025
Institute of Environmental System Biology, Dalian Maritime University, Dalian, China.
The Space Radiobiological Exposure Facility (SREF) is a general experimental facility at the China Space Station for scientific research in the fields of space radiation protection, space radiation biology, biotechnology, and the origin of life. The facility provides an environment with controllable temperatures for experiments with organic molecules and model organisms such as small animals, plant seeds, and microorganisms. The cultivation of small animals can be achieved in the facility with the use of microfluidic chips and images and videos of such experiments can be captured by microscopy.
View Article and Find Full Text PDFLab Chip
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
Osteoarthritis (OA) is a leading cause of disability, often resulting from overuse or injury, but inactivity can also contribute to cartilage degeneration. Conventional in vivo models struggle to isolate and study the specific effects of mechanical stress on cartilage health. To address this limitation, a microphysiological system (MPS) is established to examine how varying levels of shear stress impact cartilage homeostasis.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
The current understanding of the human auditory system has been primarily based on studies using animal and cellular models. Organoids have been used to simulate cochlear structures and replicate cochlear functions. However, the physical and chemical cues required to control the development of cochlear organoids accurately remain poorly understood, limiting research advances on cochlea-on-a-chip systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!