Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we propose a glucose biosensor with the advantages of quantification, excellent linearity, temperature-calibration function, and real-time detection based on a resistor and capacitor, in which the resistor works as a temperature sensor and the capacitor works as a biosensor. The resistor has a symmetrical meandering type structure that increases the contact area, leading to variations in resistance and effective temperature monitoring of a glucose solution. The capacitor is designed with an intertwined structure that fully contacts the glucose solution, so that capacitance is sensitively varied, and high sensitivity monitoring can be realized. Moreover, a polydimethylsiloxane microfluidic channel is applied to achieve a fixed shape, a fixed point, and quantitative measurements, which can eliminate influences caused by fluidity, shape, and thickness of the glucose sample. The glucose solution in a temperature range of 25-100 °C is measured with variations of 0.2716 Ω/°C and a linearity response of 0.9993, ensuring that the capacitor sensor can have reference temperature information before detecting the glucose concentration, achieving the purpose of temperature calibration. The proposed capacitor-based biosensor demonstrates sensitivities of 0.413 nF/mg·dL, 0.048 nF/mg·dL, and 0.011 pF/mg·dL; linearity responses of 0.96039, 0.91547, and 0.97835; and response times less than 1 second, respectively, at DC, 1 kHz, and 1 MHz for a glucose solution with a concentration range of 25-1000 mg/dL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699495 | PMC |
http://dx.doi.org/10.3390/bios11120484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!