: Recently, accumulating evidence confirmed that up-frameshift protein 1 (UPF1) was aberrantly expressed in various cancers. However, the molecular mechanism mediated by UPF1 underlying colorectal carcinogenesis remains unclear. : Immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction analysis were used to determine the expression level of UPF1 in colorectal cancer (CRC) tissues. CCK-8, EdU, transwell assay, and flow cytometry were performed to investigate the biological significance of UPF1. Epithelial-mesenchymal transition (EMT) and apoptosis associated markers were detected by western blotting. : We found that UPF1 expression was upregulated in CRC tissues and cell lines. Clinical analysis revealed that high UPF1 expression was positively correlated with advanced stage, lymph node metastasis and shorter survival. Knockdown of UPF1 suppressed cell proliferation and cell cycle progression. Functionally, UPF1 promotes tumor metastasis by inducing epithelial to mesenchymal transition. Further investigations revealed that knockdown of UPF1 promoted apoptosis through triggering DNA damage. : Taken together, this research revealed that UPF1 plays an oncogenic role in CRC via regulating EMT and apoptosis and may be a potential therapeutic target for CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721398PMC
http://dx.doi.org/10.1177/15330338211064438DOI Listing

Publication Analysis

Top Keywords

upf1
10
up-frameshift protein
8
promotes tumor
8
epithelial-mesenchymal transition
8
colorectal cancer
8
crc tissues
8
emt apoptosis
8
upf1 expression
8
knockdown upf1
8
protein promotes
4

Similar Publications

Although tamoxifen is commonly utilized as adjuvant therapy for Estrogen Receptor alpha (ERα)-positive breast cancer patients, approximately 30-50% of individuals treated with tamoxifen experience relapse. Therefore, it is essential to investigate additional factors besides ERα that influence the estrogen response. In this study, cross-analysis of databases were performed, and the results revealed a significant association between LINC00626 and ERα signaling as well as increased expression levels of this gene in tamoxifen-resistant cells.

View Article and Find Full Text PDF

The nonsense-mediated mRNA decay (NMD) pathway triggers the degradation of defective mRNAs and governs the expression of mRNAs with specific characteristics. Current understanding indicates that NMD is often significantly suppressed during viral infections to protect the viral genome. In numerous viruses, this inhibition is achieved through direct or indirect interference with the RNA helicase UPF1, thereby promoting viral replication and enhancing pathogenesis.

View Article and Find Full Text PDF

Cells regulate gene expression through various RNA regulatory mechanisms, and this regulation often becomes less efficient with age, contributing to accelerated aging and various age-related diseases. Nonsense-mediated mRNA decay (NMD), a well-characterized RNA surveillance mechanism, degrades aberrant mRNAs with premature termination codons (PTCs) to prevent the synthesis of truncated proteins. While the role of NMD in cancer and developmental and genetic diseases is well documented, its implications in human aging remain largely unexplored.

View Article and Find Full Text PDF

Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression.

Biochem Biophys Res Commun

February 2025

Université Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France. Electronic address:

Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.

View Article and Find Full Text PDF

DDX50 cooperates with STAU1 to effect stabilization of pro-differentiation RNAs.

Cell Rep

January 2025

Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Program in Cancer Biology, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA. Electronic address:

Glucose binding can alter protein oligomerization to enable differentiation. Here, we demonstrate that glucose binding is a general capacity of DExD/H-box RNA helicases, including DDX50, which was found to be essential for the differentiation of diverse cell types. Glucose binding to conserved DDX50 ATP binding sequences altered protein conformation and dissociated DDX50 dimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!