Bridging steady-state and stick-slip fracture propagation in glassy polymers.

Soft Matter

Laboratoire Sciences et Ingénierie de la Matière Molle (SIMM), PSL Research University, Sorbonne Université, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris cedex 05, France.

Published: January 2022

Both an experimental and a theoretical investigation of fracture propagation mechanisms acting at the process zone scale in glassy polymers are presented. The main aim is to establish a common modeling for different kinds of glassy polymers presenting either steady-state fracture propagation or stick-slip fracture propagation or both, depending on loading conditions and sample shapes. From the experimental point of view, new insights are provided by the AFM measurements of viscoplastic strain fields acting within the micrometric process zone in a brittle epoxy resin, which highlight an extremely slow unexpected steady-state regime with finite plastic strains of about 30% around a blunt crack tip, accompanied by propagating shear lips. From the theoretical point of view, we apply to glassy polymers some recently developed models for describing soft dissipative fracture that are pertinent with the observed finite strains. We propose a unified modeling of fracture energy for both the steady-state and stick-slip fracture propagation based on the evaluation of energy dissipation density at a characteristic strain rate induced in the process zone by a competition between the crack propagation velocity and the macroscopic sample loading rate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm01450aDOI Listing

Publication Analysis

Top Keywords

fracture propagation
20
glassy polymers
16
stick-slip fracture
12
process zone
12
steady-state stick-slip
8
point view
8
fracture
7
propagation
6
bridging steady-state
4
glassy
4

Similar Publications

Offshore low-permeability reservoirs are mainly composed of complex fault-block structures with poor physical properties, which makes establishing an effective displacement relationship particularly challenging. Hydraulic fracturing assisted oil displacement (HFAD) can effectively increase the oil production of a single well by creating fractures to replenish the producing energy. In this study, the Khristianovich-Geertsma-de Klerk (KGD) model is used to calculate the propagation of vertical fractures, and the flow tube method is used to calculate the two-phase oil-water flow in filtration and seepage.

View Article and Find Full Text PDF

Although China's low-permeability and tight oil reservoir utilization and newly proven reserves are growing annually, the overall recovery of such reservoirs is generally low. One of the main factors influencing the low recovery is the effect of intricate dynamic fracture propagations on the remaining oil distribution. Constrained by the evolution of an in situ stress field and the accumulation of fluid injection volumes, the growth of dynamic fractures allows a production profile of water breakthrough.

View Article and Find Full Text PDF

Earthquakes are produced by the propagation of rapid slip along tectonic faults. The propagation dynamics is governed by a balance between elastic stored energy in the surrounding rock, and dissipated energy at the propagating tip of the slipping patch. Energy dissipation is dictated by the mechanical behaviour of the fault, which is itself the result of feedbacks between thermo-hydro-mechanical processes acting at the mm to sub-mm scale.

View Article and Find Full Text PDF

Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.

View Article and Find Full Text PDF

Objective: This study aims to analyze adverse drug events (ADE) related to romosozumab from the second quarter of 2019 to the third quarter of 2023 from FAERS database.

Methods: The ADE data related to romosozumab from 2019 Q2 to 2023 Q3 were collected. After data normalization, four signal strength quantification algorithms were used: ROR (Reporting Odds Ratios), PRR (Proportional Reporting Ratios), BCPNN (Bayesian Confidence Propagation Neural Network), and EBGM (Empirical Bayesian Geometric Mean).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!