Inexpensive and efficient catalysts are crucial to industrial adoption of the electrochemical hydrogen evolution reaction (HER) to produce hydrogen. Although two-dimensional (2D) MoS materials have large specific surface areas, the catalytic efficiency is normally low. In this work, Ag and other dopants are plasma-implanted into MoS to tailor the surface and interface to enhance the HER activity. The HER activty increases initially and then decreases with increasing dopant concentrations and implantation of Ag is observed to produce better results than Ti, Zr, Cr, N, and C. At a current density of 400 mA cm , the overpotential of Ag500-MoS @Ni S /NF is 150 mV and the Tafel slope is 41.7 mV dec . First-principles calculation and experimental results reveal that Ag has higher hydrogen adsorption activity than the other dopants and the recovered S sites on the basal plane caused by plasma doping facilitate water splitting. In the two-electrode overall water splitting system with Ag500-MoS @Ni S /NF, a small cell voltage of 1.47 V yields 10 mA cm and very little degradation is observed after operation for 70 hours. The results reveal a flexible and controllable strategy to optimize the surface and interface of MoS boding well for hydrogen production by commercial water splitting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867165 | PMC |
http://dx.doi.org/10.1002/advs.202104774 | DOI Listing |
Dalton Trans
January 2025
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt +201113343594.
Achieving a net-zero emissions economy requires significant decarbonization of the transportation sector, which depends on the development of highly efficient electrocatalysts. Electrolytic water splitting is a promising approach to this end, with Ni-Mo alloys emerging as strong candidates for hydrogen production catalysts. This study investigates the electrodeposition of Ni and Ni-Mo nanostructured alloys with high molybdenum content onto low-carbon steel cathodes using a novel alkaline green lactate bath.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany.
Doping and surface-modification are well-established strategies for the performance enhancement of bismuth vanadate (BiVO) photoanodes in photoelectrochemical (PEC) water splitting devices. Herein, a "double-use" strategy for the development of high-performance BiVO photoanodes for solar water splitting is reported, where a molecular cobalt-phosphotungstate (CoPOM = Na[Co(HO)(PWO)]) is used both as a bulk doping agent as well as a surface-deposited water oxidation cocatalyst. The use of CoPOM for bulk doping of BiVO is shown to enhance the electrical conductivity and improve the charge separation efficiency, resulting in the enhancement of the maximum applied-bias photoconversion efficiency (ABPE) by a factor of ∼18 to 0.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia.
Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!