Understanding the Effects of Interfacial Lithium Ion Concentration on Lithium Metal Anode.

Adv Sci (Weinh)

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.

Published: February 2022

Despite the development of multidimensional state-of-the-art electrode materials for constructing better lithium metal anodes (LMAs), the key factors influencing the electrochemical performance of LMAs are still poorly understood. Herein, it is demonstrated that the local lithium ion concentration at the interface between the electrode and electrolyte exerts significant influence on the electrochemical performance of LMAs. The local ion concentration is multiplied by introducing pseudocapacitive nanocarbons (PNCs) containing numerous heteroatoms, because PNCs can store large numbers of lithium ions in a pseudocapacitive manner, and promote the formation of an electrochemical double layer. The high interfacial lithium ion concentration induces the formation of lithium-rich inorganic solid-electrolyte-interface layers with high ionic conductivities, and facilitates sustainable and stable supplies of lithium ion charge carriers on the overall active surfaces of the PNCs. Accordingly, the PNC-induced LMA exhibits high Coulombic efficiencies, high rate capabilities, and stable cycling performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867159PMC
http://dx.doi.org/10.1002/advs.202104145DOI Listing

Publication Analysis

Top Keywords

lithium ion
16
ion concentration
16
interfacial lithium
8
lithium metal
8
electrochemical performance
8
performance lmas
8
lithium
7
ion
5
understanding effects
4
effects interfacial
4

Similar Publications

Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging.

View Article and Find Full Text PDF

Fast-Charging Lithium-Ion Batteries Enabled by Magnetically Aligned Electrodes.

ACS Nano

January 2025

Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

With the increasing popularity of electric transportation over the past several years, fast-charging lithium-ion batteries are highly demanded for shortening electric vehicles' charging time. Extensive efforts have been made on material development and electrode engineering; however, few of them are scalable and cost-effective enough to be potentially incorporated into the current battery production. Here, we propose a facile magnetic templating method for preparing LiFePO (LFP) cathodes with vertically aligned graphene sheets to realize fast-charging properties at a practical loading of 20 mg cm.

View Article and Find Full Text PDF

With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.

View Article and Find Full Text PDF

Soluble Covalent Organic Frameworks as Efficient Lithiophilic Modulator for High-Performance Lithium Metal Batteries.

Angew Chem Int Ed Engl

January 2025

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed.

View Article and Find Full Text PDF

Anodes play an important role in lithium-ion batteries (LIBs) and have received much attention as ideal carbon anode materials for meeting the needs for high-rate capability, long-term stability, and high energy density. In this study, a π-extended oligo(perylene) diimide (PTN) is synthesized by using a solvothermal reaction with NH·HO as the decarboxylation reaction catalyst and perylene anhydride as the precursor. A nanocarbon fiber framework can be produced through self-assembly during the carbonization process of π-extended perylene diimide oligomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!