Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this meta-analysis was to evaluate the clinical significance of glutamine in the management of patients with colorectal cancer (CRC) after radical operation. Electronic databases, including PubMed, EMBASE, MEDLINE, Cochrane Library, Chinese Biomedical Database (CBM), China National Knowledge Infrastructure (CNKI), VIP medicine information system (VIP), and Wanfang electronic databases were comprehensively searched from inception to 30, July 2021. Prospective randomized trials with glutamine vs. routine nutrition or blank therapy were selected. The immune function related indicators (including IgA, IgG, IgM, CD4+, CD8+, and the ratio of CD4+/CD8+), post-operative complications [including surgical site infection (SSI), anastomotic leakage, and length of hospital stay (LOS)], and corresponding 95% confidence intervals (CIs) were assessed in the pooled analysis. Subsequently, the heterogeneity between studies, sensitivity, publication bias, and meta-regression analysis were performed. Consequently, 31 studies which contained 2,201 patients (1,108 in the glutamine group and 1,093 in the control group) were included. Results of pooled analysis indicated that glutamine significantly improved the humoral immune function indicators [including IgA (SMD = 1.15, 95% CI: 0.72-1.58), IgM (SMD = 0.68, 95% CI: 0.48-0.89), and IgG (SMD = 1.10, 95% CI: 0.70-1.50)], and the T cell immune function indicators [including CD4+ (SMD = 0.76, 95% CI: 0.53-0.99) and the ratio of CD4+/CD8+ (SMD = 0.92, 95% CI: 0.57-1.28)]. Meanwhile, the content of CD8+ was decreased significantly (SMD = -0.50, 95% CI: -0.91 to -0.10) followed by glutamine intervention. Pooled analysis of SSI (RR = 0.48, 95% CI: 0.30-0.75), anastomotic leakage (RR = 0.23, 95% CI: 0.09-0.61), and LOS (SMD = -1.13, 95% CI: -1.68 to -0.58) were decreased significantly in glutamine group compared with control group. Metaregression analysis revealed that the covariate of small-sample effects influenced the robustness and reliability of IgG outcome potentially. Findings of the present work demonstrated that glutamine ought to be applied as an effective immunenutrition therapy in the treatment of patients with CRC after radical surgery. The present meta-analysis has been registered in PROSPERO (no. CRD42021243327). https://www.crd.york.ac.uk/PROSPERO, Identifier: CRD42021243327.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686683 | PMC |
http://dx.doi.org/10.3389/fnut.2021.765809 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!