Quantum anomalous Hall effect from intertwined moiré bands.

Nature

School of Applied and Engineering Physics and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.

Published: December 2021

Electron correlation and topology are two central threads of modern condensed matter physics. Semiconductor moiré materials provide a highly tuneable platform for studies of electron correlation. Correlation-driven phenomena, including the Mott insulator, generalized Wigner crystals, stripe phases and continuous Mott transition, have been demonstrated. However, non-trivial band topology has remained unclear. Here we report the observation of a quantum anomalous Hall effect in AB-stacked MoTe /WSe moiré heterobilayers. Unlike in the AA-stacked heterobilayers, an out-of-plane electric field not only controls the bandwidth but also the band topology by intertwining moiré bands centred at different layers. At half band filling, corresponding to one particle per moiré unit cell, we observe quantized Hall resistance, h/e (with h and e denoting the Planck's constant and electron charge, respectively), and vanishing longitudinal resistance at zero magnetic field. The electric-field-induced topological phase transition from a Mott insulator to a quantum anomalous Hall insulator precedes an insulator-to-metal transition. Contrary to most known topological phase transitions, it is not accompanied by a bulk charge gap closure. Our study paves the way for discovery of emergent phenomena arising from the combined influence of strong correlation and topology in semiconductor moiré materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-04171-1DOI Listing

Publication Analysis

Top Keywords

quantum anomalous
12
anomalous hall
12
moiré bands
8
electron correlation
8
correlation topology
8
semiconductor moiré
8
moiré materials
8
mott insulator
8
band topology
8
topological phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!