The increasing demand for next-generation energy storage systems necessitates the development of high-performance lithium batteries. Unfortunately, current Li anodes exhibit rapid capacity decay and a short cycle life, owing to the continuous generation of solid electrolyte interface and isolated Li (i-Li). The formation of i-Li during the nonuniform dissolution of Li dendrites leads to a substantial capacity loss in lithium batteries under most testing conditions. Because i-Li loses electrical connection with the current collector, it has been considered electrochemically inactive or 'dead' in batteries. Contradicting this commonly accepted presumption, here we show that i-Li is highly responsive to battery operations, owing to its dynamic polarization to the electric field in the electrolyte. Simultaneous Li deposition and dissolution occurs on two ends of the i-Li, leading to its spatial progression toward the cathode (anode) during charge (discharge). Revealed by our simulation results, the progression rate of i-Li is mainly affected by its length, orientation and the applied current density. Moreover, we successfully demonstrate the recovery of i-Li in Cu-Li cells with >100% Coulombic efficiency and realize LiNiMnCoO (NMC)-Li full cells with extended cycle life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-021-04168-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!