A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state. | LitMetric

Accurate prediction of the solubility of gases in hydrocarbons is a crucial factor in designing enhanced oil recovery (EOR) operations by gas injection as well as separation, and chemical reaction processes in a petroleum refinery. In this work, nitrogen (N) solubility in normal alkanes as the major constituents of crude oil was modeled using five representative machine learning (ML) models namely gradient boosting with categorical features support (CatBoost), random forest, light gradient boosting machine (LightGBM), k-nearest neighbors (k-NN), and extreme gradient boosting (XGBoost). A large solubility databank containing 1982 data points was utilized to establish the models for predicting N solubility in normal alkanes as a function of pressure, temperature, and molecular weight of normal alkanes over broad ranges of operating pressure (0.0212-69.12 MPa) and temperature (91-703 K). The molecular weight range of normal alkanes was from 16 to 507 g/mol. Also, five equations of state (EOSs) including Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), Zudkevitch-Joffe (ZJ), Peng-Robinson (PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) were used comparatively with the ML models to estimate N solubility in normal alkanes. Results revealed that the CatBoost model is the most precise model in this work with a root mean square error of 0.0147 and coefficient of determination of 0.9943. ZJ EOS also provided the best estimates for the N solubility in normal alkanes among the EOSs. Lastly, the results of relevancy factor analysis indicated that pressure has the greatest influence on N solubility in normal alkanes and the N solubility increases with increasing the molecular weight of normal alkanes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695585PMC
http://dx.doi.org/10.1038/s41598-021-03643-8DOI Listing

Publication Analysis

Top Keywords

normal alkanes
36
solubility normal
24
gradient boosting
12
molecular weight
12
solubility
9
normal
9
alkanes
9
nitrogen solubility
8
machine learning
8
equations state
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!