Background And Objectives: To describe the phenotypic spectrum of dystrophinopathy in a large cohort of individuals with exon 2 duplications (Dup2), who may be particularly amenable to therapies directed at restoring expression of either full-length dystrophin or nearly full-length dystrophin through utilization of the exon 5 internal ribosome entry site (IRES).
Methods: In this retrospective observational study, we analyzed data from large genotype-phenotype databases (the United Dystrophinopathy Project [UDP] and the Italian DMD network) and classified participants into Duchenne muscular dystrophy (DMD), intermediate muscular dystrophy (IMD), or Becker muscular dystrophy (BMD) phenotypes. Log-rank tests for time-to-event variables were used to compare age at loss of ambulation (LOA) in participants with Dup2 vs controls without Dup2 in the UDP database and for comparisons between steroid-treated vs steroid-naive participants with Dup2.
Results: Among 66 participants with Dup2 (UDP = 40, Italy = 26), 61% were classified as DMD, 9% as IMD, and 30% as BMD. Median age at last observation was 15.4 years (interquartile range 8.79-26.0) and 75% had been on corticosteroids for at least 6 months. Age at LOA differed significantly between participants with Dup2 DMD and historical controls without Dup2 DMD ( < 0.001). Valid spirometry was limited but suggested a delay in the typical age-related decline in forced vital capacity and 24 of 55 participants with adequate cardiac data had cardiomyopathy.
Discussion: Some patients with Dup2 display a milder disease course than controls without Dup2 DMD, and prolonged ambulation with corticosteroids suggests the potential of IRES activation as a molecular mechanism. As Dup2-targeted therapies reach clinical applications, this information is critical to aid in the interpretation of the efficacy of new treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865888 | PMC |
http://dx.doi.org/10.1212/WNL.0000000000013246 | DOI Listing |
Ann Neurol
January 2025
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
Unlabelled: Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.
Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.
Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.
Muscle Nerve
January 2025
Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Introduction/aims: Prophylactic treatment of left ventricular dysfunction (LVD) in Duchenne muscular dystrophy (DMD) delays onset of LVD, but there is limited data showing impact on survival. Our aim was to describe survival among treated and untreated individuals with DMD.
Methods: Retrospective, population-based surveillance data from the Muscular Dystrophy Surveillance, Tracking and Research Network (MD STARnet) were used.
Cells
January 2025
Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland.
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD).
View Article and Find Full Text PDFCells
January 2025
Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.
View Article and Find Full Text PDFJ Stem Cells Regen Med
December 2024
Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Naples (IT).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!