Proteomics in support of immunotherapy: contribution to model-based precision medicine.

Expert Rev Proteomics

Center for Therapeutic Innovation, Immuno-inflammatory Disease, Institut de Recherches Servier, Croissy Sur Seine, France.

Published: January 2022

Introduction: Proteomics encompasses a wide and expanding range of methods to identify, characterize, and quantify thousands of proteins from a variety of biological samples, including blood samples, tumors, and tissues. Such methods are supportive of various forms of immunotherapy applied to chronic conditions such as allergies, autoimmune diseases, cancers, and infectious diseases.

Areas Covered: In support of immunotherapy, proteomics based on mass spectrometry has multiple specific applications related to (i) disease modeling and patient stratification, (ii) antigen/ autoantigen/neoantigen/ allergen identification, (iii) characterization of proteins and monoclonal antibodies used for immunotherapeutic or diagnostic purposes, (iv) identification of biomarkers and companion diagnostics and (v) monitoring by immunoproteomics of immune responses elicited in the course of the disease or following immunotherapy.

Expert Opinion: Proteomics contributes as an enabling technology to an evolution of immunotherapy toward a precision medicine approach aiming to better tailor treatments to patients' specificities in multiple disease areas. This trend is favored by a better understanding through multi-omics profiling of both the patient's characteristics, his/her immune status as well as of the features of the immunotherapeutic drug.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14789450.2021.2020653DOI Listing

Publication Analysis

Top Keywords

support immunotherapy
8
precision medicine
8
proteomics
4
proteomics support
4
immunotherapy
4
immunotherapy contribution
4
contribution model-based
4
model-based precision
4
medicine introduction
4
introduction proteomics
4

Similar Publications

Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.

Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.

View Article and Find Full Text PDF

Background: Vascular endothelial growth factor-A (VEGFA) is a key inducer of angiogenesis, responsible for generating new blood vessels in the tumor microenvironment (TME) and facilitating metastasis. Notably, Avastin, which targets VEGFA, failed to demonstrate any significant benefit in clinical trials for breast cancer (BC). This study aimed to investigate the clinical relevance of gene expression in BC.

View Article and Find Full Text PDF

Here, we present a case of Guillain-Barré syndrome (GBS) that mimicked brain death. A 66-year-old lady with a medical history of breast cancer (now receiving hormone therapy), hypertension, and hypothyroidism, presented to the emergency department. The patient was admitted to the neuro ICU with absent brainstem and spinal cord responses, concerning for possible brain death.

View Article and Find Full Text PDF

Potential CD19 antigen loss following CD19-directed therapy has raised concerns over sequential use of these therapies. Tafasitamab, a CD19-targeting immunotherapy, combined with lenalidomide, is approved for relapsed or refractory diffuse large B-cell lymphoma (R/R DLBCL) treatment in adults ineligible for autologous stem cell transplantation. This retrospective analysis examined characteristics and outcomes of adults with R/R DLBCL who received tafasitamab preceding CD19-directed chimeric antigen receptor T-cell (CAR-T) therapy in a real-world setting.

View Article and Find Full Text PDF

Aberrant c-AMP signalling in richter syndrome revealed by single-cell transcriptome and 3D chromatin analysis.

Biomark Res

January 2025

Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Richter syndrome (RS), characterized by aggressive lymphoma arising from chronic lymphocytic leukaemia (CLL), presents a poor response to treatment and grim prognosis. To elucidate RS mechanisms, paired samples from a patient with DLBCL-RS were subjected to single-cell RNA sequencing (scRNA-seq) and high-throughput chromosome conformation capture (Hi-C) sequencing. Over 10,000 cells were profiled via scRNA-seq, revealing the comprehensive B cell transformation in RS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!