Backtracking of RNA polymerase (RNAP) is an important pausing mechanism during DNA transcription that is part of the error correction process that enhances transcription fidelity. We model the backtracking mechanism of RNAP, which usually happens when the polymerase tries to incorporate a noncognate or 'mismatched' nucleotide triphosphate. Previous models have made simplifying assumptions such as neglecting the trailing polymerase behind the backtracking polymerase or assuming that the trailing polymerase is stationary. We derive exact analytic solutions of a stochastic model that includes locally interacting RNAPs by explicitly showing how a trailing RNAP influences the probability that an error is corrected or incorporated by the leading backtracking RNAP. We also provide two related methods for computing the mean times for error correction and incorporation given an initial local RNAP configuration. Using these results, we propose an effective interacting-RNAP lattice that can be readily simulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1478-3975/ac45e2 | DOI Listing |
PLoS One
January 2025
Department of Computer Science, University of Jaén, Jaén, Spain.
In the production sector, the usefulness of predictive systems as a tool for management and decision-making is well known. In the agricultural sector, a correct economic balance of the farm depends on making the right decisions. For this purpose, having information in advance on crop yields is an extraordinary help.
View Article and Find Full Text PDFRadiol Artif Intell
January 2025
From the Department of Radiology (E.J.H., S.K., H.K., D. K., S.H.Y.) and Medical Research Collaborating Center (H.H.), Seoul National University Hospital, 101 Daehak- ro, Jongno-gu, Seoul 03080, Korea; Department of Radiology, Seoul National University College of Medicine (E.J.H., H.K., S.H.Y.), Seoul, Korea; Department of Radiology, Hanyang University Medical Center, Hanyang University College of Medicine (S-J.Y., Seoul, Korea).
Quantifying pleural effusion change on chest CT is important for evaluating disease severity and treatment response. The purpose of this study was to assess the accuracy of artificial intelligence (AI)-based volume quantification of pleural effusion change on CT images, using the volume of drained fluid as the reference standard. Seventy-nine participants (mean age, 65 ± [SD] 13 years; 47 male) undergoing thoracentesis were prospectively enrolled from October 2021 to September 2023.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.
Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
We present the theory and implementation of a fully variational wave function-density functional theory (DFT) hybrid model, which is applicable to many cases of strong correlation. We denote this model as the multiconfigurational self-consistent on-top pair-density functional theory (MC-srPDFT) model. We have previously shown how the multiconfigurational short-range DFT (MC-srDFT) hybrid model can describe many multiconfigurational cases of any spin symmetry and also state-specific calculations on excited states [Hedegård et al.
View Article and Find Full Text PDFInt J Part Ther
March 2025
Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany.
Purpose: The spot size of scanned particle beams is of crucial importance for the correct dose delivery and, therefore, plays a significant role in the quality assurance (QA) of pencil beam scanning ion beam therapy.
Materials And Methods: This study compares 5 detector types-radiochromic film, ionization chamber (IC) array, flat panel detector, multiwire chamber, and IC-for measuring the spot size of proton and carbon ion beams.
Results: Variations of up to 30% were found between detectors, underscoring the impact of detector choice on QA outcomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!