AI Article Synopsis

  • GABAergic synapses are crucial for controlling neuronal activity and preventing over-excitability in the brain.
  • Following a brain injury from excitotoxicity, these inhibitory synapses are dismantled, leading to increased circuit excitability and contributing to further brain damage.
  • The study reveals that this disassembly occurs in a precise sequence involving rapid changes in GABARs and the removal of scaffolding proteins, which are regulated by specific signaling pathways, highlighting potential targets for preserving synaptic function after injuries.

Article Abstract

GABAergic synaptic inhibition controls neuronal firing, excitability, and synaptic plasticity to regulate neuronal circuits. Following an acute excitotoxic insult, inhibitory synapses are eliminated, reducing synaptic inhibition, elevating circuit excitability, and contributing to the pathophysiology of brain injuries. However, mechanisms that drive inhibitory synapse disassembly and elimination are undefined. We find that inhibitory synapses are disassembled in a sequential manner following excitotoxicity: GABARs undergo rapid nanoscale rearrangement and are dispersed from the synapse along with presynaptic active zone components, followed by the gradual removal of the gephyrin scaffold, prior to complete elimination of the presynaptic terminal. GABAR nanoscale reorganization and synaptic declustering depends on calcineurin signaling, whereas disassembly of gephyrin relies on calpain activation, and blockade of both enzymes preserves inhibitory synapses after excitotoxic insult. Thus, inhibitory synapse disassembly occurs rapidly, with nanoscale precision, in a stepwise manner and most likely represents a critical step in the progression of hyperexcitability following excitotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824488PMC
http://dx.doi.org/10.1016/j.celrep.2021.110142DOI Listing

Publication Analysis

Top Keywords

inhibitory synapses
12
synaptic inhibition
8
excitotoxic insult
8
insult inhibitory
8
inhibitory synapse
8
synapse disassembly
8
inhibitory
5
stepwise disassembly
4
disassembly gabaergic
4
synapses
4

Similar Publications

Background: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self‐cells and propagation of injury.

View Article and Find Full Text PDF

Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy.

Trends Neurosci

January 2025

Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany. Electronic address:

Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins.

View Article and Find Full Text PDF

In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex challenge, influenced by genetic and environmental factors. This review focuses on the proteins calbindin (CB), calretinin (CR) and parvalbumin (PV) in the context of ASD, exploring their clinical correlations and providing a deeper understanding of the spectrum. In addition, we seek to understand the role of these proteins in GABAergic regulation and their implication in the pathophysiology of ASD.

View Article and Find Full Text PDF

Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!