The recently discovered layered kagome metals AV_{3}Sb_{5} (A=K, Rb, and Cs) with vanadium kagome networks provide a novel platform to explore correlated quantum states intertwined with topological band structures. Here we report the prominent effect of hole doping on both superconductivity and charge density wave (CDW) order, achieved by selective oxidation of exfoliated thin flakes. A superconducting dome is revealed as a function of the effective doping content. The superconducting transition temperature (T_{c}) and upper critical field in thin flakes are significantly enhanced compared with the bulk, which are accompanied by the suppression of CDW. Our detailed analyses establish the pivotal role of van Hove singularities in promoting correlated quantum orders in these kagome metals. Our experiments not only demonstrate the intriguing nature of superconducting and CDW orders, but also provide a novel route to tune the carrier concentration through both selective oxidation and electric gating. This establishes CsV_{3}Sb_{5} as a tunable 2D platform for the further exploration of topology and correlation among 3d electrons in kagome lattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.237001 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
Aerogels are regarded as the next generation of thermal insulators; however, conventional aerogels suffer from issues such as brittleness, low moisture resistance, and a complex production process. Subnanowires (SNWs) are emerging materials known for their exceptional flexibility, toughness, intrinsic hydrophobicity, and gelling capabilities, making them ideal building blocks for flexible, tough, hydrophobic, and thermally insulating aerogels. Herein, we present a simple and scalable strategy to construct SNW aerogels by freeze-drying hydroxyapatite (HAP) SNW dispersions in cyclohexane.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, United States.
The antiferromagnetic topological insulator MnBiTe (MBT) exhibits an ideal platform for investigating unique topological and magnetic properties. While the transport characteristics of magnetic phase transitions in the MBT materials have been extensively studied, the understanding of their mechanical properties and magneto-mechanical coupling remains limited. Here, we utilize nanoelectromechanical systems to probe the intrinsic magnetism in MBT thin flakes through magnetostrictive coupling.
View Article and Find Full Text PDFACS Nano
January 2025
BK21 Graduate Program in Intelligent Semiconductor Technology, Seoul 03722, Republic of Korea.
MoS, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS in large area and confirm the ultralow leakage current of approximately 10 A/μm, significantly lower than the previous report (10 A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley-Read-Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Gordon A. and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Future processes and materials are needed to enable multichip packages with chip-to-chip (C2C) data rates of 50 GB/s or higher. This presents a fundamental challenge because of the skin effect, which exacerbates signal transmission losses at high frequencies. Our results indicate that smooth copper interconnects with relatively thin cuprous oxides (CuO, Cu) and amine-functional silane adhesion promoters improve interfacial adhesion with epoxy dielectrics by nearly an order of magnitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!