The process of material cutting emerges from a series of nonlinear phenomena including frictional contact, plastic deformation, and fracture. While cutting dominated by shear deformation is of interest to achieve a smooth material removal and a high-quality surface finish, the fracture-induced chip breaking is of equal importance to prevent the formation of long chips. Here we show that discrepant observations and predictions of these two distinct cutting mechanisms can be reconciled into a unified framework. A simple analytical model is developed to predict the mechanism of chip formation in a homogeneous medium as a function of work piece intrinsic material properties, tool geometry, and the process parameters. The model reveals the existence of a critical depth of cut, below which the chip formation is gradually progressed by plastic deformation in the shear plane, and above which chips break off by abrupt crack propagation. The models' prediction is validated by systematic in situ orthogonal cutting experiments and literature data for a wide range of materials over multiple length scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.235502 | DOI Listing |
Kaohsiung J Med Sci
January 2025
Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China.
Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed.
View Article and Find Full Text PDFPLoS One
January 2025
ESQlabs Gmbh, Saterland, Germany.
Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Medical Intensive Care Unit, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou City, Fujian Province, China.
Background: The fibrosis of pathologic scar (PS) is formed by the excessive deposition of extracellular matrix, resulting in an abnormal scar. Recent clinical tests have indicated that the regulation of PS fibroblast cells (PSF cells) proliferation can serve as an intervention measure for PS. Our work aimed to elucidate the specific mechanism of action of TCF4 on the progression of PS fibrosis.
View Article and Find Full Text PDFBackground: About half of the patients suffering from Alzheimer's disease (AD) display sleeping disorders. Disruptions in the central circadian clock (CC), located in the brain, accelerate AD pathogenesis, making the CC a promising target. In preclinical trials, this strategy have shown efficacy but clinical results are inconsistent.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southern California, San Diego, CA, USA.
Background: Blood tests for Alzheimer's disease (AD) that measure biomarkers could be useful as minimally-invasive ways to give patients more and earlier access to screening. While some AD biomarkers can be detected in plasma, they need to be more sensitive to make plasma AD tests more effective. Extracellular vesicles (EVs) in plasma carry AD-related biomarkers from the brain and could offer a concentrated source of brain-related biomarkers, but it is hard to isolate and analyze plasma EVs for clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!