Prussian blue (PB) and its analogues (PBAs) are drawing attention as promising materials for sodium-ion batteries and other applications, such as desalination of water. Because of the possibilities to explore many analogous materials with engineered, defect-rich environments, computational optimization of ion-transport mechanisms that are key to the device performance could facilitate real-world applications. In this work, we have applied a multiscale approach involving quantum chemistry, self-consistent mean-field theory, and finite-element modeling to investigate ion transport in PBAs. We identify a cyanide-mediated ladder mechanism as the primary process of ion transport. Defects are found to be impermissible to diffusion, and a random distribution model accurately predicts the impact of defect concentrations. Notably, the inclusion of intermediary local minima in the models is key for predicting a realistic diffusion constant. Furthermore, the intermediary landscape is found to be an essential difference between both the intercalating species and the type of cation doping in PBAs. We also show that the ladder mechanism, when employed in multiscale computations, properly predicts the macroscopic charging performance based on atomistic results. In conclusion, the findings in this work may suggest the guiding principles for the design of new and effective PBAs for different applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762639 | PMC |
http://dx.doi.org/10.1021/acsami.1c20910 | DOI Listing |
J Med Chem
January 2025
AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States.
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which regulates ion and fluid transport across epithelial cells. Mutations lead to complications, with life-limiting lung disease being the most severe manifestation. Traditional treatments focused on managing symptoms, but advances in understanding CF's molecular basis led to small-molecule CFTR modulators.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Theoretical Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany.
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt.
View Article and Find Full Text PDFSci Rep
January 2025
School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.
View Article and Find Full Text PDFACS Nano
January 2025
Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.
Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!