A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of a novel and orally active Farnesoid X receptor agonist for the protection of acetaminophen-induced hepatotoxicity. | LitMetric

Acetaminophen (APAP) overdose is a leading cause of acute hepatic failure and liver transplantation, while the existing treatments are poorly effective. Therefore, it is necessary to develop effective therapeutic drugs for APAP-induced hepatotoxicity. Farnesoid X receptor (FXR) is a potential target for the treatment of liver disease, and the activation of FXR protects mice against APAP-induced hepatotoxicity. Compound 5, a glycine-conjugated derivative of FXR agonist 4, was designed to extend the chemical space of existing FXR agonists. Molecular modeling study indicated that compound 5 formed hydrogen bond network with key residues of FXR. Moreover, compound 5 (10 mg/kg) revealed better protective effects against APAP-induced hepatotoxicity than parent compound 4 (30 mg/kg). Further mechanical research indicated that compound 5 regulated the expressions of genes related to FXR and oxidative stress. These findings suggest that compound 5 is a promising FXR agonist suitable for further research, and it is the first time to verify that the glycine-conjugated derivative five exerted better protective effects than its parent compound.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14014DOI Listing

Publication Analysis

Top Keywords

apap-induced hepatotoxicity
12
farnesoid receptor
8
glycine-conjugated derivative
8
fxr agonist
8
indicated compound
8
better protective
8
protective effects
8
parent compound
8
fxr
7
compound
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!