Simazine is a widely used herbicide and known as an environmental estrogen. Multiple studies have proved simazine can induced the degeneration of dopaminergic neuron resulting in a degenerative disease-like syndrome. Herein, we explored the neurotoxicity of simazine on the dopaminergic nervous system of embryos and weaned offspring during the maternal gestation period or the maternal gestation and lactation periods. We found that simazine disturbed the crucial components expression involved in Lmx1a/Wnt1 pathway of dopaminergic neuron in embryonic and weaned offspring. Furthermore, morphological and behavioral tests performed on weaned male offspring treated by simazine suggested that the grip strength, autonomic exploring, and the space sense ability were weakened, as well as the pathological damage of dopaminergic neuron was clearly observed. But, the same neurotoxicity of simazine is less significantly observed in female offspring. Our findings will provide reliable reference for the determination of environmental limits and new insight into the pathogenesis of nonfamilial neurodegenerative diseases related to environmental risk factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.23442 | DOI Listing |
Lymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles.
View Article and Find Full Text PDFNeuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation.
View Article and Find Full Text PDFAt cellular and circuit levels, drug addiction is considered a dysregulation of synaptic plasticity. In addition, dysfunction of the glutamate transporter 1 (GLT-1) in the nucleus accumbens (NAc) has also been proposed as a mechanism underlying drug addiction. However, the cellular and synaptic impact of GLT-1 alterations in the NAc remain unclear.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil.
Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!