Surface modeling of photocatalytic materials for water splitting.

Phys Chem Chem Phys

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.

Published: January 2022

The photocatalyst surface is central to photocatalytic reactions. However, it has been a challenge to explicitly understand both the surface configuration and the structure-dependent photocatalytic properties at the atomic level. First-principles density functional theory (DFT) calculations provide a versatile method that makes up for the lack of experimental surface studies. In DFT calculations, the initial surface model greatly affects the accuracy of the calculation results. Consequently, establishing a more realistic and more reliable material surface models is undoubtedly the first step and the most important link in theoretical calculations. The aim of this Perspective is to provide a general understanding of the methods for the surface modeling of photocatalytic materials in recent years. We begin with a discussion of the basic theories applied in photocatalytic surface research, followed by an explanation of the importance of surface modeling in photocatalysis. We then elaborate on the advantages and disadvantages of the basic surface model and briefly describe the latest surface modeling methods. Finally, we evaluate the rationality of current surface modeling methods. We summarize this Perspective by prospecting the developing directions of photocatalytic surface research in the future. It is believed that a reasonable surface model should be verified by both experimental characterization and theoretical computation with negative feedback.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp04352hDOI Listing

Publication Analysis

Top Keywords

surface modeling
20
surface
14
surface model
12
modeling photocatalytic
8
photocatalytic materials
8
dft calculations
8
photocatalytic surface
8
modeling methods
8
photocatalytic
6
materials water
4

Similar Publications

During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Taking the conducted model test by authors as the research object, this paper first carries out detailed numerical analysis and verifies the reliability of the established model. Furthermore, the test phenomenon is explained based on numerical analysis, while parameter analysis is carried out, which mainly includes soil deformation between piles and soil deformation inside and outside excavation. The research results show that when the inclination angle of the piles is small (such as 10°), all or most of the soil (the range of the pile top to 0.

View Article and Find Full Text PDF

Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.

View Article and Find Full Text PDF

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!