AI Article Synopsis

  • Ferroptosis is a new type of regulated cell death linked to iron buildup and increased reactive oxygen species, which has been a focus of research, particularly in the context of heart damage caused by ischemia-reperfusion (I/R) injury.
  • Researchers developed a myocardial I/R injury model that showed signs of ferroptosis, including increased Fe2+ levels and changes in specific enzyme activities, but these negative effects were significantly reduced when treated with ferulic acid (FA).
  • FA demonstrated protective effects by enhancing antioxidant enzyme activity, lowering oxidative stress, promoting ATP production, and increasing the expression of AMPKα2, indicating its potential as a cardioprotective agent against ferroptosis.

Article Abstract

Ferroptosis, a recently discovered form of regulated cell death that is characterized by iron accumulation and excessive reactive oxygen species generation, has been favored by most researchers. Increasing evidence suggest that ferulic acid (FA) could exert marked effects to myocardial ischemia reperfusion (I/R) injury, although the understanding of its molecular mechanism is still limited. In our study, the myocardial I/R injury model was established to explore the relationship between I/R injury and ferroptosis. First, we successfully constructed myocardial I/R injury model with changes in ST segment, increased creatine phosphokinase, lactate dehydrogenase activities, and N-Terminal Pro Brain Natriuretic Peptide content, and a significantly larger infarct size. Then, the increased levels of the Ptgs2 mRNA, Fe2+ accumulation, and a decreased reduced glutathione/oxidized glutathione disulfide ratio were detected in ischemia-reperfusion-injured heart, which is highly consistent with ferroptosis. However, these effects were significantly improved after FA treatment. Based on these results, FA increased the activities of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, decreased the malondialdehyde level, ameliorated the production of reactive oxygen species, and promoted the generation of adenosine triphosphate. These effects of FA are similar to those of the ferroptosis inhibitor ferrostatin-1. Upregulation of AMPKα2 and Glutathione Peroxidase 4 expression were also observed in the FA group. Compound C, a specific Adenosine 5'-monophosphate (AMP)-activated protein kinase inhibitor, significantly blocked the protective effect of FA. These findings underlined that FA inhibits ferroptosis by upregulating the expression of AMPKα2 and serves as a cardioprotective strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983949PMC
http://dx.doi.org/10.1097/FJC.0000000000001199DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
ferulic acid
8
myocardial ischemia
8
ischemia reperfusion
8
reactive oxygen
8
oxygen species
8
myocardial i/r
8
injury model
8
glutathione peroxidase
8
ferroptosis
6

Similar Publications

Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been reported to participate in the pathophysiological processes of cerebral ischaemia-reperfusion injury, which include reduced energy homeostasis, increased generation of oxidative stress species (ROS) and the release of apoptotic factors. Oxyglutamate carrier (OGC) is an important carrier protein on the inner mitochondrial membrane that can transport metabolites from the cytoplasm to the mitochondria. The role of OGC in cerebral ischaemia-reperfusion injury (I/R) remains unknown.

View Article and Find Full Text PDF

L. protects cerebral ischemia/reperfusion injury via arachidonic acid/p53-mediated apoptosis axis.

Front Pharmacol

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Introduction: Stroke is a debilitating disease and the second leading cause of death worldwide, of which ischemic stroke is the dominant type. L., also known as safflower, has been used to treat cerebrovascular diseases, especially ischemic stroke in many Asian countries.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!