Background: In contrast-enhanced abdominal computed tomography (CT), radiation and contrast media (CM) injection protocols are closely linked to each other, and therefore a combination is the basis for achieving optimal image quality. However, most studies focus on optimizing one or the other parameter separately.

Purpose: Reducing radiation dose may be most important for a young patient or a population in need of repetitive scanning, whereas CM reduction might be key in a population with insufficient renal function. The recently introduced technical solution, in the form of an automated tube voltage selection (ATVS) slider, might be helpful in this respect. The aim of the current study was to systematically evaluate feasibility of optimizing either radiation or CM dose in abdominal imaging compared with a combined approach.

Methods: Six Göttingen minipigs (mean weight, 38.9 ± 4.8 kg) were scanned on a third-generation dual-source CT. Automated tube voltage selection and automated tube current modulation techniques were used, with quality reference values of 120 kVref and 210 mAsref. Automated tube voltage selection was set at 90 kV semimode. Three different abdominal scan and CM protocols were compared intraindividually: (1) the standard "combined" protocol, with the ATVS slider position set at 7 and a body weight-adapted CM injection protocol of 350 mg I/kg body weight, iodine delivery rate (IDR) of 1.1 g I/s; (2) the CM dose-saving protocol, with the ATVS slider set at 3 and CM dose lowered to 294 mg I/kg, resulting in a lower IDR of 0.9 g I/s; (3) the radiation dose-saving protocol, with the ATVS slider position set at 11 and a CM dose of 441 mg I/kg and an IDR 1.3 g I/s, respectively. Scans were performed with each protocol in arterial, portal venous, and delayed phase. Objective image quality was evaluated by measuring the attenuation in Hounsfield units, signal-to-noise ratio, and contrast-to-noise ratio of the liver parenchyma. The overall image quality, contrast quality, noise, and lesion detection capability were rated on a 5-point Likert scale (1 = excellent, 5 = very poor). Protocols were compared for objective image quality parameters using 1-way analysis of variance and for subjective image quality parameters using Friedman test.

Results: The mean radiation doses were 5.2 ± 1.7 mGy for the standard protocol, 7.1 ± 2.0 mGy for the CM dose-saving protocol, and 3.8 ± 0.4 mGy for the radiation dose-saving protocol. The mean total iodine load in these groups was 13.7 ± 1.7, 11.4 ± 1.4, and 17.2 ± 2.1 g, respectively. No significant differences in subjective overall image or contrast quality were found. Signal-to-noise ratio and contrast-to-noise ratio were not significantly different between protocols in any scan phase. Significantly more noise was seen when using the radiation dose-saving protocol (P < 0.01). In portal venous and delayed phases, the mean attenuation of the liver parenchyma significantly differed between protocols (P < 0.001). Lesion detection was significantly better in portal venous phase using the CM dose-saving protocol compared with the radiation dose-saving protocol (P = 0.037).

Conclusions: In this experimental setup, optimizing either radiation (-26%) or CM dose (-16%) is feasible in abdominal CT imaging. Individualizing either radiation or CM dose leads to comparable objective and subjective image quality. Personalized abdominal CT examination protocols can thus be tailored to individual risk assessment and might offer additional degrees of freedom.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000844DOI Listing

Publication Analysis

Top Keywords

dose-saving protocol
28
image quality
24
automated tube
16
atvs slider
16
radiation dose-saving
16
radiation dose
12
tube voltage
12
voltage selection
12
protocol atvs
12
idr i/s
12

Similar Publications

Background: The tin (Sn) prefilter technique is a recently introduced dose-saving technique in computed tomography (CT). This study investigates whether there is an altered molecular biological response in blood cells using the tin prefiltering technique.

Methods: Blood from 6 donors was X-irradiated ex-vivo with 20 mGy full dose (FD) protocols (Sn 150 kV, 150 kV, and 120 kV) and a tin prefiltered 16.

View Article and Find Full Text PDF

Advanced lung imaging with photon-counting detectors: Insights from thermoluminescence dosimetry.

Acad Radiol

August 2024

Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, 53792 Madison, WI. Electronic address:

Rationale And Objectives: This study investigates the dose burden of photon-counting detector (PCD) lung CT with ultra-high-resolution (UHR) and standard mode using organ-based tube current modulation (OBTCM).

Materials And Methods: An anthropomorphic Alderson-Rando phantom was scanned in UHR and standard mode with and without OBTCM on three dose levels (IQ 5, 20, 50). Effective radiation dose was determined by thermoluminescent dosimetry in 13 measurement sites and compared with the calculated effective dose derived from the dose-length product.

View Article and Find Full Text PDF

Ultra-low dose chest CT for the diagnosis of pulmonary arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia.

Diagn Interv Imaging

October 2024

Department of Radiology, Hôpital Louis Pradel, Hospices Civils de Lyon, 69677, Bron, France; Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, U1206, 69100 Villeurbanne, France. Electronic address:

Purpose: The purpose of this study was to compare ultra-low dose (ULD) and standard low-dose (SLD) chest computed tomography (CT) in terms of radiation exposure, image quality and diagnostic value for diagnosing pulmonary arteriovenous malformation (AVM) in patients with hereditary hemorrhagic telangiectasia (HHT).

Materials And Methods: In this prospective board-approved study consecutive patients with HHT referred to a reference center for screening and/or follow-up chest CT examination were prospectively included from December 2020 to January 2022. Patients underwent two consecutive non-contrast chest CTs without dose modulation (i.

View Article and Find Full Text PDF

Flat panel CT versus multidetector CT in skull base imaging: are there differences in image quality?

Head Face Med

November 2023

Department of Otolaryngology - Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Strasse 5, 72076, Tübingen, Germany.

Background: Purpose of this study was to compare image quality of the skull base in standard 20s protocol flat panel computed tomography (FPCT) with the new time and dose improved 10s protocol as well as with 128 slice multidetector computed tomography (MDCT).

Methods: 10 whole skull preparations were scanned with either 128 slice MDCT(SOMATOM Definition AS+, Siemens, Erlangen) or FPCT (AXIOM-Artis, Siemens, Erlangen) using 10s or 20s protocol.

Results: FPCT provides significantly better image quality and improved delimitation of clinically relevant structures in the anterior, temporal and posterior skull base compared to 128 slice MDCT.

View Article and Find Full Text PDF

Objective: To compare the image quality of low-dose CT (LD-CT) with tin filtration of the lumbar spine after metal implants to standard clinical CT, and to evaluate the potential for metal artifact and dose reduction.

Materials And Methods: CT protocols were optimized in a cadaver torso. Seventy-four prospectively included patients with metallic lumbar implants were scanned with both standard CT (120 kV) and tin-filtered LD-CT (Sn140kV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!