A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Establishing a priori and a posteriori predictive models to assess patients' peak skin dose in interventional cardiology. Part 2: results of the VERIDIC project. | LitMetric

Background: Optimizing patient exposure in interventional cardiology is key to avoid skin injuries.

Purpose: To establish predictive models of peak skin dose (PSD) during percutaneous coronary intervention (PCI), chronic total occlusion percutaneous coronary intervention (CTO), and transcatheter aortic valve implantation (TAVI) procedures.

Material And Methods: A total of 534 PCI, 219 CTO, and 209 TAVI were collected from 12 hospitals in eight European countries. Independent associations between PSD and clinical and technical dose determinants were examined for those procedures using multivariate statistical analysis. A priori and a posteriori predictive models were built using stepwise multiple linear regressions. A fourfold cross-validation was performed, and models' performance was evaluated using the root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R²), and linear correlation coefficient (r).

Results: Multivariate analysis proved technical parameters to overweight clinical complexity indices with PSD mainly affected by fluoroscopy time, tube voltage, tube current, distance to detector, and tube angulation for PCI. For CTO, these were body mass index, tube voltage, and fluoroscopy contribution. For TAVI, these parameters were sex, fluoroscopy time, tube voltage, and cine acquisitions. When benchmarking the predictive models, the correlation coefficients were r = 0.45 for the a priori model and r = 0.89 for the a posteriori model for PCI. These were 0.44 and 0.67, respectively, for the CTO a priori and a posteriori models, and 0.58 and 0.74, respectively, for the TAVI a priori and a posteriori models.

Conclusion: A priori predictive models can help operators estimate the PSD before performing the intervention while a posteriori models are more accurate estimates and can be useful in the absence of skin dose mapping solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02841851211062089DOI Listing

Publication Analysis

Top Keywords

predictive models
20
priori posteriori
16
skin dose
12
tube voltage
12
posteriori predictive
8
peak skin
8
interventional cardiology
8
percutaneous coronary
8
coronary intervention
8
fluoroscopy time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!