Gelatin is one of the most versatile biopolymers in various biomedical applications. A gelatin derivative gelatin-catechol (Gel-C) was developed in this study to further optimize its chemical and physical properties such as thermal reversibility and injectability. We found that Gel-C remains in a solution state at room temperature, and the temperature-dependent gelation capability of gelatin is well preserved in Gel-C. Its gel-forming temperature decreased to about 10 °C (about 30 °C for gelatin), and a series of gelatin derivatives with different gel-forming temperatures (10-30 °C) were formed by mixing gelatin and Gel-C in different ratios. Additionally, irreversible Gel-C hydrogels could be made without the addition of external stimuli by combining the physical cross-linking of gelatin and the chemical cross-linking of catechol. At the same time, properties of Gel-C hydrogels such as thermal reversibility and injectability could be manipulated by controlling the temperature and pH of the precursor solution. By simulating the formation of an irreversible Gel-C hydrogel , an gelling system was fabricated by lowering the local temperature of the hydrogel with cold shock, thus realizing targeted and localized molecular delivery with prolonged retention time. This simple system integrated with the temperature responsiveness of gelatin and chemical cross-linking of catechol groups thus provides a promising platform to fabricate an gelling system for drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c19151 | DOI Listing |
J Occup Health
January 2025
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.
View Article and Find Full Text PDFEnviron Res
January 2025
Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Bioaugmented slurry technology is a sustainable remediation technology for PAHs-contaminated soil. However, the lack of experimental data on the remediation of complex, actual contaminated soils has hindered the practical application of this technology. This study explored the bioaugmented degradation of PAHs using actual soil slurry with and without the addition of microbial agents in the microscopic world.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:
The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.
View Article and Find Full Text PDFJ Therm Biol
January 2025
School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China. Electronic address:
This study investigated the single and combined effects of environmental heat stress and physical exercise on executive function (EF) performance, prefrontal cortex oxygenation, thermoregulatory responses and subjective perceptions. Sixteen subjects participated in four experimental sessions: two under moderate environmental conditions (23 °C), with and without physical exercise (R23, E23), and two under hot environmental conditions (35 °C), with and without physical exercise (R35, E35). In each session, participants completed EF tasks before and after 1 h of passive rest or 45 min of moderate-intensity cycling followed by 15 min of rest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!