Background: Tactile perception is an essential function of skin. As this research involves many fields, such as skin friction, psychology, and neuroscience, the achievement tactile perception is scattered in various fields with different research methods. Therefore, it is necessary to study the whole tactile loop in a multimodal way, synchronizing all tactile information.
Materials And Methods: To measure information from touch to haptics, we developed a specially designed measuring platform connecting to an electroencephalogram (EEG) recording system. Sandpapers with different roughness were used as samples. First, the surface properties were measured in tribological experiments. Second, psychophysical experiments were conducted to assess the volunteers' cognition of samples' roughness. Third, the mechanical parameters and EEG were measured at the same time during fingertip sliding on samples. Then, the data of all four tactile elements were processed and analyzed separately. The characteristic features were extracted from those data in the time-frequency domain. Furthermore, the correlation coefficient was calculated in the pairwise comparison of each element to evaluate the feasibility of the multimodal method in the study of tactile perception.
Results: The 600-mesh sandpaper has the largest Ra, Rz, Rsm, and particle size. The normal load, friction force, spectral centroid, and α- and β-wave energy ratios of EEG at chosen electrodes have significant differences and correlations between 3000- and 600-mesh sandpaper in general.
Conclusion: This multimodal method could be used in the study of tactile perception, which is a comprehensive way to observe the whole tactile loop from multiple perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907616 | PMC |
http://dx.doi.org/10.1111/srt.13127 | DOI Listing |
Philos Trans A Math Phys Eng Sci
January 2025
Electrical and Computer Engineering Department, UCLA, Los Angeles, CA, USA.
Sensors for the perception of multimodal stimuli-ranging from the five senses humans possess and beyond-have reached an unprecedented level of sophistication and miniaturization, raising the prospect of making man-made large-scale complex systems that can rival nature a reality. Artificial intelligence (AI) at the edge aims to integrate such sensors with real-time cognitive abilities enabled by recent advances in AI. Such AI progress has only been achieved by using massive computing power which, however, would not be available in most distributed systems of interest.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Human Performance Research Centre, University of Konstanz, Constance, Germany.
Lightly touching a solid object reduces postural sway. Here, we determine the effect of artificially modifying haptic feedback for balance. Participants stood with their eyes closed, lightly gripping a manipulandum that moved synchronously with body sway to systematically enhance or attenuate feedback gain between +2 and -2, corresponding to motion in the same or opposite direction to the body, respectively.
View Article and Find Full Text PDFCommun Biol
January 2025
Center for Social and Affective Neuroscience, Linköping University Hospital, Linköping, Sweden.
Research on interoception has revealed the role of heartbeats in shaping our perceptual awareness and embodying a first-person perspective. These heartbeat dynamics exhibit distinct responses to various types of touch. We advanced that those dynamics are directly associated to the brain activity that allows self-other distinction.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Orofacial Pain and Jaw Function, Malmö University, Malmö, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark; Scandinavian Center for Orofacial Neurosciences (SCON), Malmö, Sweden.
Occlusal tactile acuity (OTA) and bite force are essential components of the sensorimotor control of oral behaviors. While these variables have been studied independently, it has not yet been revealed whether compressive force impacts the occlusal perception mediated by the mechanoreceptive afferents in the periodontal ligament. The present study examined the effect of repetition and maximum bite force on OTA by testing nine aluminum foils of different thicknesses together with a sham test with no foil, three times each, in randomized order in 36 healthy individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!